Security Papers from the 2020s

This webpage is an attempt to assemble a ranking of top-cited security papers from the 2020s. The ranking has been created based on citations of papers published at top security conferences. More details are available here.

Top-cited papers from 2024 ⌄

  1. 1
    Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi:
    SWiSSSE: System-Wide Security for Searchable Symmetric Encryption.
    Proceedings on Privacy Enhancing Technologies (PoPETS), 2024
    27 cites at Google Scholar
    3241% above average of year
    Visited: Oct-2024
    Paper: DOI
  2. 2
    Edoardo Debenedetti, Giorgio Severi, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Eric Wallace, Nicholas Carlini, and Florian Tramèr:
    Privacy Side Channels in Machine Learning Systems.
    USENIX Security Symposium, 2024
    21 cites at Google Scholar
    2498% above average of year
    Visited: Oct-2024
    Paper: DOI
  3. 3
    Gonzalo Munilla Garrido, Vivek Nair, and Dawn Song:
    SoK: Data Privacy in Virtual Reality.
    Proceedings on Privacy Enhancing Technologies (PoPETS), 2024
    18 cites at Google Scholar
    2127% above average of year
    Visited: Oct-2024
    Paper: DOI
  4. 4
    Xinyue Shen, Yiting Qu, Michael Backes, and Yang Zhang:
    Prompt Stealing Attacks Against Text-to-Image Generation Models.
    USENIX Security Symposium, 2024
    18 cites at Google Scholar
    2127% above average of year
    Visited: Oct-2024
    Paper: DOI
  5. 5
    Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-Alexandre de Montjoye:
    Did the Neurons Read your Book? Document-level Membership Inference for Large Language Models.
    USENIX Security Symposium, 2024
    16 cites at Google Scholar
    1880% above average of year
    Visited: Oct-2024
    Paper: DOI
  6. 6
    Zengrui Liu, Umar Iqbal, and Nitesh Saxena:
    Opted Out, Yet Tracked: Are Regulations Enough to Protect Your Privacy?
    Proceedings on Privacy Enhancing Technologies (PoPETS), 2024
    15 cites at Google Scholar
    1756% above average of year
    Visited: Sep-2024
    Paper: DOI
  7. 7
    Chao Wang, Yue Zhang, and Zhiqiang Lin:
    RootFree Attacks: Exploiting Mobile Platform's Super Apps From Desktop.
    ACM Asia Conference on Computer and Communications Security (AsiaCCS), 2024
    14 cites at Google Scholar
    1632% above average of year
    Visited: Sep-2024
    Paper: DOI
  8. 8
    Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang:
    Don't Listen To Me: Understanding and Exploring Jailbreak Prompts of Large Language Models.
    USENIX Security Symposium, 2024
    14 cites at Google Scholar
    1632% above average of year
    Visited: Sep-2024
    Paper: DOI
  9. 9
    Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang, and Houman Homayoun:
    Large Language Models for Code Analysis: Do LLMs Really Do Their Job?
    USENIX Security Symposium, 2024
    14 cites at Google Scholar
    1632% above average of year
    Visited: Oct-2024
    Paper: DOI
  10. 10
    Aviv Yaish, Kaihua Qin, Liyi Zhou, Aviv Zohar, and Arthur Gervais:
    Speculative Denial-of-Service Attacks In Ethereum.
    USENIX Security Symposium, 2024
    13 cites at Google Scholar
    1509% above average of year
    Visited: Oct-2024
    Paper: DOI

Top-cited papers from 2023 ⌄

  1. 1
    Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace:
    Extracting Training Data from Diffusion Models.
    USENIX Security Symposium, 2023
    449 cites at Google Scholar
    4527% above average of year
    Visited: Sep-2024
    Paper: DOI
  2. 2
    Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt:
    Examining Zero-Shot Vulnerability Repair with Large Language Models.
    IEEE Symposium on Security and Privacy (S&P), 2023
    235 cites at Google Scholar
    2322% above average of year
    Visited: Sep-2024
    Paper: DOI
  3. 3
    Linyi Li, Tao Xie, and Bo Li:
    SoK: Certified Robustness for Deep Neural Networks.
    IEEE Symposium on Security and Privacy (S&P), 2023
    173 cites at Google Scholar
    1683% above average of year
    Visited: Sep-2024
    Paper: DOI
  4. 4
    Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia:
    Narcissus: A Practical Clean-Label Backdoor Attack with Limited Information.
    ACM Conference on Computer and Communications Security (CCS), 2023
    164 cites at Google Scholar
    1590% above average of year
    Visited: Sep-2024
    Paper: DOI
  5. 5
    Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li:
    RAB: Provable Robustness Against Backdoor Attacks.
    IEEE Symposium on Security and Privacy (S&P), 2023
    160 cites at Google Scholar
    1549% above average of year
    Visited: Sep-2024
    Paper: DOI
  6. 6
    Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng, Rana Hanocka, and Ben Y. Zhao:
    Glaze: Protecting Artists from Style Mimicry by Text-to-Image Models.
    USENIX Security Symposium, 2023
    150 cites at Google Scholar
    1446% above average of year
    Visited: Sep-2024
    Paper: DOI
  7. 7
    Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella Béguelin:
    Analyzing Leakage of Personally Identifiable Information in Language Models.
    IEEE Symposium on Security and Privacy (S&P), 2023
    136 cites at Google Scholar
    1301% above average of year
    Visited: Oct-2024
    Paper: DOI
  8. 8
    Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh:
    Do Users Write More Insecure Code with AI Assistants?
    ACM Conference on Computer and Communications Security (CCS), 2023
    132 cites at Google Scholar
    1260% above average of year
    Visited: Oct-2024
    Paper: DOI
  9. 9
    Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais:
    SoK: Decentralized Finance (DeFi) Attacks.
    IEEE Symposium on Security and Privacy (S&P), 2023
    128 cites at Google Scholar
    1219% above average of year
    Visited: Sep-2024
    Paper: DOI
  10. 10
    Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang:
    DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models.
    ACM Conference on Computer and Communications Security (CCS), 2023
    116 cites at Google Scholar
    1095% above average of year
    Visited: Sep-2024
    Paper: DOI

Top-cited papers from 2022 ⌄

  1. 1
    Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr:
    Membership Inference Attacks From First Principles.
    IEEE Symposium on Security and Privacy (S&P), 2022
    528 cites at Google Scholar
    2314% above average of year
    Visited: Sep-2024
    Paper: DOI
  2. 2
    Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck:
    Dos and Don'ts of Machine Learning in Computer Security.
    USENIX Security Symposium, 2022
    371 cites at Google Scholar
    1596% above average of year
    Visited: Oct-2024
    Paper: DOI
  3. 3
    Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri:
    Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions.
    IEEE Symposium on Security and Privacy (S&P), 2022
    367 cites at Google Scholar
    1578% above average of year
    Visited: Oct-2024
    Paper: DOI
  4. 4
    Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang:
    Dynamic Backdoor Attacks Against Machine Learning Models.
    IEEE European Symposium on Security and Privacy (EuroS&P), 2022
    305 cites at Google Scholar
    1294% above average of year
    Visited: Oct-2024
    Paper: DOI
  5. 5
    Kaihua Qin, Liyi Zhou, and Arthur Gervais:
    Quantifying Blockchain Extractable Value: How dark is the forest?
    IEEE Symposium on Security and Privacy (S&P), 2022
    274 cites at Google Scholar
    1153% above average of year
    Visited: Sep-2024
    Paper: DOI
  6. 6
    Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage:
    Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on Production Federated Learning.
    IEEE Symposium on Security and Privacy (S&P), 2022
    272 cites at Google Scholar
    1143% above average of year
    Visited: Oct-2024
    Paper: DOI
  7. 7
    Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider:
    FLAME: Taming Backdoors in Federated Learning.
    USENIX Security Symposium, 2022
    241 cites at Google Scholar
    1002% above average of year
    Visited: Sep-2024
    Paper: DOI
  8. 8
    Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri:
    Enhanced Membership Inference Attacks against Machine Learning Models.
    ACM Conference on Computer and Communications Security (CCS), 2022
    213 cites at Google Scholar
    874% above average of year
    Visited: Oct-2024
    Paper: DOI
  9. 9
    Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding:
    Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference.
    USENIX Security Symposium, 2022
    202 cites at Google Scholar
    823% above average of year
    Visited: Sep-2024
    Paper: DOI
  10. 10
    Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni Vigna:
    Understanding Security Issues in the NFT Ecosystem.
    ACM Conference on Computer and Communications Security (CCS), 2022
    194 cites at Google Scholar
    787% above average of year
    Visited: Oct-2024
    Paper: DOI

Top-cited papers from 2021 ⌄

  1. 1
    Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel:
    Extracting Training Data from Large Language Models.
    USENIX Security Symposium, 2021
    1581 cites at Google Scholar
    3859% above average of year
    Visited: Oct-2024
    Paper: DOI
  2. 2
    Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot:
    Machine Unlearning.
    IEEE Symposium on Security and Privacy (S&P), 2021
    701 cites at Google Scholar
    1655% above average of year
    Visited: Oct-2024
    Paper: DOI
  3. 3
    Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong:
    FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping.
    Network and Distributed System Security Symposium (NDSS), 2021
    559 cites at Google Scholar
    1300% above average of year
    Visited: Oct-2024
    Paper: DOI
  4. 4
    Virat Shejwalkar and Amir Houmansadr:
    Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning.
    Network and Distributed System Security Symposium (NDSS), 2021
    391 cites at Google Scholar
    879% above average of year
    Visited: Oct-2024
    Paper: DOI
  5. 5
    Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger:
    Poseidon: A New Hash Function for Zero-Knowledge Proof Systems.
    USENIX Security Symposium, 2021
    362 cites at Google Scholar
    807% above average of year
    Visited: Sep-2024
    Paper: DOI
  6. 6
    Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang:
    BadNL: Backdoor Attacks against NLP Models with Semantic-preserving Improvements.
    Annual Computer Security Applications Conference (ACSAC), 2021
    352 cites at Google Scholar
    781% above average of year
    Visited: Sep-2024
    Paper: DOI
  7. 7
    Liwei Song and Prateek Mittal:
    Systematic Evaluation of Privacy Risks of Machine Learning Models.
    USENIX Security Symposium, 2021
    346 cites at Google Scholar
    766% above average of year
    Visited: Sep-2024
    Paper: DOI
  8. 8
    Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li:
    Detecting AI Trojans Using Meta Neural Analysis.
    IEEE Symposium on Security and Privacy (S&P), 2021
    318 cites at Google Scholar
    696% above average of year
    Visited: Sep-2024
    Paper: DOI
  9. 9
    Eugene Bagdasaryan and Vitaly Shmatikov:
    Blind Backdoors in Deep Learning Models.
    USENIX Security Symposium, 2021
    313 cites at Google Scholar
    684% above average of year
    Visited: Oct-2024
    Paper: DOI
  10. 10
    Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin:
    Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning.
    Proceedings on Privacy Enhancing Technologies (PoPETS), 2021
    278 cites at Google Scholar
    596% above average of year
    Visited: Oct-2024
    Paper: DOI

Top-cited papers from 2020 ⌄

  1. 1
    Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong:
    Local Model Poisoning Attacks to Byzantine-Robust Federated Learning.
    USENIX Security Symposium, 2020
    1146 cites at Google Scholar
    1775% above average of year
    Visited: Sep-2024
    Paper: DOI
  2. 2
    Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu:
    Data Poisoning Attacks Against Federated Learning Systems.
    European Symposium on Research in Computer Security (ESORICS), 2020
    756 cites at Google Scholar
    1137% above average of year
    Visited: Oct-2024
    Paper: DOI
  3. 3
    Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright:
    HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.
    IEEE Symposium on Security and Privacy (S&P), 2020
    754 cites at Google Scholar
    1134% above average of year
    Visited: Sep-2024
    Paper: DOI
  4. 4
    Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels:
    Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability.
    IEEE Symposium on Security and Privacy (S&P), 2020
    505 cites at Google Scholar
    726% above average of year
    Visited: Oct-2024
    Paper: DOI
  5. 5
    Marcel Keller:
    MP-SPDZ: A Versatile Framework for Multi-Party Computation.
    ACM Conference on Computer and Communications Security (CCS), 2020
    499 cites at Google Scholar
    717% above average of year
    Visited: Oct-2024
    Paper: DOI
  6. 6
    Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa:
    Delphi: A Cryptographic Inference Service for Neural Networks.
    USENIX Security Symposium, 2020
    492 cites at Google Scholar
    705% above average of year
    Visited: Oct-2024
    Paper: DOI
  7. 7
    James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova:
    Secure Single-Server Aggregation with (Poly)Logarithmic Overhead.
    ACM Conference on Computer and Communications Security (CCS), 2020
    414 cites at Google Scholar
    578% above average of year
    Visited: Oct-2024
    Paper: DOI
  8. 8
    Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank Piessens:
    Plundervolt: Software-based Fault Injection Attacks against Intel SGX.
    IEEE Symposium on Security and Privacy (S&P), 2020
    406 cites at Google Scholar
    564% above average of year
    Visited: Oct-2024
    Paper: DOI
  9. 9
    Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz:
    GAN-Leaks: A Taxonomy of Membership Inference Attacks against Generative Models.
    ACM Conference on Computer and Communications Security (CCS), 2020
    392 cites at Google Scholar
    542% above average of year
    Visited: Oct-2024
    Paper: DOI
  10. 10
    Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot:
    High Accuracy and High Fidelity Extraction of Neural Networks.
    USENIX Security Symposium, 2020
    392 cites at Google Scholar
    542% above average of year
    Visited: Sep-2024
    Paper: DOI