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Abstract
With the growing processing power of computing systems 
and the increasing availability of massive datasets, machine-
learning (ML) algorithms have led to major breakthroughs 
in many different areas. This development has influenced 
computer security, spawning a series of work on learning-
based security systems, such as for malware detection, 
vulnerability discovery, and binary code analysis. Despite 
great potential, ML in security is prone to subtle pitfalls that 
undermine its performance and render learning-based sys-
tems potentially unsuitable for security tasks and practical 
deployment.

In this paper, we look at this problem with critical eyes. 
First, we identify common pitfalls in the design, imple-
mentation, and evaluation of learning-based security sys-
tems. We conduct a study of 30 papers from top-tier secu-
rity conferences within the past 10 years, confirming that 
these pitfalls are widespread in the current security lit-
erature. In an empirical analysis, we further demonstrate 
how individual pitfalls can lead to unrealistic performance 
and interpretations, obstructing the understanding of the 
security problem at hand. As a remedy, we propose action-
able recommendations to support researchers in avoiding 
or mitigating the pitfalls where possible. Furthermore, we 
identify open problems when applying ML in security and 
provide directions for further research.

1. INTRODUCTION
No day goes by without reading machine-learning suc-
cess stories. The widespread access to specialized com-
putational resources and large datasets, along with novel 
concepts and architectures for deep learning, have paved 
the way for ML breakthroughs in several areas, such as 
the translation of natural languages22 and the recognition 
of image content.14 This development has naturally influ-
enced security research: Although mostly confined to spe-
cific applications in the past, ML has become one of the 
key enablers to studying and addressing security-relevant 
problems at large in several application domains, includ-
ing intrusion detection,17 malware analysis,11 vulnerabil-
ity discovery,25 and binary code analysis.20

Machine learning, however, has no clairvoyant abilities 
and requires reasoning about statistical properties of data 
across a fairly delicate workflow: Incorrect assumptions 
and experimental biases may cast doubts on this process 
to the extent that it becomes unclear whether we can trust 
scientific discoveries made using learning algorithms at 
all. Attempts to identify such challenges and limitations in 
specific security domains, such as network intrusion detec-
tion, started two decades ago5 and were extended more re-
cently to other domains.12,18 Orthogonal to this line of work, 
however, we argue that there exist generic pitfalls related to 
machine learning that affect all security domains and have 
received little attention so far.

These pitfalls can lead to over-optimistic results and, 
even worse, affect the entire ML workflow, weakening as-
sumptions, conclusions, and lessons learned. As a conse-
quence, a false sense of achievement is felt that hinders the 
adoption of research advances in academia and industry. A 
sound scientific methodology is fundamental to support in-
tuitions and draw conclusions. We argue that this need is 
especially relevant in security, where processes are often un-
dermined by adversaries that actively aim to bypass analysis 
and break systems.

In this paper, we identify 10 common—yet subtle—pit-
falls that pose a threat to validity and hinder interpreta-
tion of research results. To support this claim, we analyze 
the prevalence of these pitfalls in 30 top-tier security pa-
pers from the past decade that rely on ML for tackling dif-
ferent problems. To our surprise, each paper suffers from 
at least three pitfalls; even worse, several pitfalls affect 
most of the papers, which shows how endemic and sub-
tle the problem is. Although the pitfalls are widespread, 
it is perhaps more important to understand the extent 
to which they weaken results and lead to overoptimistic 
conclusions. To this end, we perform an impact analysis 
of the pitfalls in four different security fields. The find-
ings support our premise echoing the broader concerns 
of the community.

In summary, we make the following contributions:
1.	 Pitfall Identification. We identify 10 pitfalls as don’ts 

of ML in security and propose dos as actionable recom-
mendations to support researchers in avoiding the pitfalls 
where possible. Furthermore, we identify open problems 
that cannot be mitigated easily and require further re-
search effort (§2).

2.	 Prevalence Analysis. We analyze the prevalence of the 
identified pitfalls in 30 representative top-tier security 
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ties. The following two pitfalls frequently induce this prob-
lem and thus require special attention when developing 
learning-based systems in computer security.

P1 – Sampling Bias.   
The collected data does not sufficiently represent the true 
data distribution of the underlying security problem.

60% present

P1 – Sampling Bias. 
The collected data does not sufficiently represent the true data
distribution of the underlying security problem.

Description. With a few rare exceptions, researchers de-
velop learning-based approaches without exact knowledge 
of the true underlying distribution of the input space. In-
stead, they need to rely on a dataset containing a fixed num-
ber of samples that aim to resemble the actual distribution. 
While it is inevitable that some bias exists in most cases, un-
derstanding the specific bias inherent to a particular prob-
lem is crucial to limiting its impact in practice. Drawing 
meaningful conclusions from the training data becomes 
challenging if the data does not effectively represent the in-
put space or even follows a different distribution.

Security implications. Sampling bias is highly relevant to 
security, as the data acquisition is particularly challenging 
and often requires using multiple sources of varying qual-
ity. As an example, for the collection of suitable datasets for 
Android malware detection, only a few public sources exist 
from which to obtain such data.2,4 As a result, it is common 
practice to rely on synthetic data or to combine data from 
different sources, both of which can introduce bias—as we 
demonstrate in §4 with examples on state-of-the-art meth-
ods for intrusion and malware detection.

P2 – Label Inaccuracy.   
Ground-truth labels required for classification tasks are inac-
curate, unstable, or erroneous, affecting the overall perfor-
mance of a learning-based system.

10%
present

P2 – Label Inaccuracy.
The ground-truth labels required for classification tasks
are inaccurate,unstable, or erroneous, affecting the overall
performance of a learning-based system.

Description. Many learning-based security systems 
are built for classification tasks. To train these systems, a 

papers published in the past decade. Additionally, we per-
form a broad survey in which we obtain and evaluate the 
feedback of the authors of these papers regarding the iden-
tified pitfalls (§3).

3.	 Impact Analysis. In four different security domains, 
we experimentally analyze the extent to which such pitfalls 
introduce experimental bias, and how we can effectively 
overcome these problems by applying the proposed recom-
mendations (§4).

Remark.  This work should not be interpreted as a finger-
pointing exercise. On the contrary, it is a reflective effort that 
shows how subtle pitfalls can have a negative impact on prog-
ress of security research, and how we—as a community—can 
mitigate them adequately.

2. PITFALLS IN MACHINE LEARNING
Despite its great success, the application of ML in practice is 
often non-trivial and prone to several pitfalls, ranging from 
obvious flaws to minor blemishes. Overlooking these issues 
may result in experimental bias or incorrect conclusions. In 
this section, we present 10 common pitfalls that occur fre-
quently in security research. Although some of these pitfalls 
may seem obvious at first glance, they are rooted in subtle 
deficiencies that are widespread in security research—even 
in papers presented at top conferences (see §3 and §4).

We group these pitfalls with respect to the stages of a typ-
ical machine-learning workflow, as depicted in Figure 1. For 
each pitfall, we provide a short description and a discussion 
of their security implications. To visualize the prevalence of 
a pitfall, we provide a colored bar depicting the proportion 
of papers in our analysis that suffer from the pitfall, with 
warmer colors indicating the presence of the pitfall. Inter-
ested readers find recommendations on how to avoid these 
pitfalls in the original publication.3

2.1. Data collection and labeling.
The design and development of learning-based systems 
usually starts with the acquisition of a representative datas-
et. It is clear that conducting experiments using unrealistic 
data leads to the misestimation of an approach’s capabili-

Figure 1. Common pitfalls of machine learning in computer security.
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ground-truth label is required for each observation. Unfor-
tunately, this labeling is rarely perfect and researchers must 
account for uncertainty and noise to prevent their models 
from suffering from inherent bias.

Security implications. For many relevant security prob-
lems, such as detecting network attacks or malware, reli-
able labels are typically not available, resulting in a chicken-
and-egg problem. As a remedy, researchers often resort to 
heuristics, such as using external sources that do not pro-
vide a reliable ground-truth. For example, services such as 
VirusTotala are commonly used for acquiring label informa-
tion for malware, but these are not always consistent.

2.2. System design and learning.
Once enough data has been collected, a learning-based se-
curity system can be trained. This process ranges from data 
preprocessing to extracting meaningful features and build-
ing an effective learning model. Unfortunately, one can in-
troduce flaws and weak spots at each of these steps.

P3 – Data Snooping.   
A learning model is trained with data that is typically not 
available in practice. Data snooping can occur in many ways, 
some of which are very subtle and hard to identify.

57% present

P3 – Data Snooping.
A learning model is trained with data that is typically not available
in practice. Data snooping can occur in many ways, some of which 
are very subtle and hard to identify.

Description. It is common practice to split collected data 
into separate training and test sets prior to generating a 
learning model. Although splitting the data seems straight-
forward, there are many subtle ways in which test data or 
other background information that is not usually available 
can affect the training process, leading to data snooping. 
We broadly distinguish between three data snooping types 
described in the original paper.3

Security implications. In security, data distributions are 
often non-stationary and continuously changing due to new 
attacks or technologies. Because of this, snooping on data 
from the future or from external data sources is a prevalent 
pitfall that leads to over-optimistic results. For instance, re-
searchers have identified data snooping in learning-based 
malware detection systems.18 In this case, the capabilities of 
the methods are overestimated due to mixing samples from 
past and present.

P4 – Spurious Correlations.   
Artifacts unrelated to the security problem create shortcut pat-
terns for separating classes. Consequently, the learning model 
adapts to these artifacts instead of solving the actual task.

20% present

P4 – Spurious Correlations.
Artifacts unrelated to the security problem create shortcut patterns
for separating classes. Consequently, the learning model adapts to
these artifacts instead of solving the actual task.

Description. Spurious correlations result from artifacts 
that correlate with the task to solve but are not actually re-
lated to it, leading to false associations. Consider the ex-
ample of a network intrusion detection system, where a 
large fraction of the attacks in the dataset originate from 
a certain network region. The model may learn to detect a 
specific IP range instead of generic attack patterns.

Security implications. Machine learning is typically ap-
plied as a black box in security. As a result, spurious correla-
tions often remain unidentified. These correlations pose a 
problem once results are interpreted and used for drawing 
general conclusions. Without knowledge of spurious corre-
lations, there is a high risk of overestimating the capabili-
ties of an approach and misjudging its practical limitations. 
As an example, §4.2 reports our analysis on a vulnerability 
discovery system indicating the presence of notable spuri-
ous correlations in the underlying data.

P5 – Biased Parameter Selection.   
The final parameters of a learning-based method are not 
entirely fixed at training time. Instead, they indirectly depend 
on the test set.

P5 – Biased Parameter Selection.
The final parameters of a learning-based method are not entirely 
fixed at training time. Instead, they indirectly depend on the test set.

10%
present

Description. Throughout the learning procedure, it is 
common practice to generate different models by varying 
hyperparameters. The best-performing model is picked 
and its performance on the test set is presented. While this 
setup is generally sound, it can still suffer from a biased pa-
rameter selection. For example, over-optimistic results can 
be easily produced by calibrating the detection threshold on 
the test data instead of the training data.

Security implications. A security system whose param-
eters have not been fully calibrated at training time can per-
form very differently in a realistic setting. While the detec-
tion performance of a network intrusion detection system 
may be assessed using a receiver operating characteristic 
(ROC) curve obtained on the test set, it can be hard to select 
the same operational point in practice due to the diversity of 
real-world traffic.21 This may lead to decreased performance 
of the system in comparison to the original experimental 
setting. Note that this pitfall is related to data snooping (P3), 
but should be considered explicitly as it can easily lead to 
inflated results.

2.3. Performance evaluation.
The next stage in a typical machine-learning workflow is the 
evaluation of the system’s performance. In the following, we 
show how different pitfalls can lead to unfair comparisons 
and biased results in the evaluation of such systems.

P6 – Inappropriate Baseline.   
The evaluation is conducted without, or with limited, base-
line methods. As a result, it is impossible to demonstrate 
improvements against the state of the art and other security 
mechanisms.

P6 – Inappropriate Baseline.
The final parameters of a learning-based method are not entirely 
fixed at training time. Instead, they indirectly depend on the test set.

20% present

Description. To show to what extent a novel method im-
proves the state of the art, it is vital to compare it with 
previously proposed methods. When choosing baselines, 
it is important to remember that there exists no universal 
learning algorithm that outperforms all other approach-
es in general.24 Consequently, providing only results for 
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the proposed approach or a comparison with mostly iden-
tical learning models does not give enough context to as-
sess its impact.

Security implications. An overly complex learning method 
increases the chances of overfitting, and also the run-time 
overhead, the attack surface, and the time and costs for de-
ployment. To show that ML techniques provide significant 
improvements compared to traditional methods, it is thus 
essential to compare these systems side by side.

While these automated methods can certainly not re-
place experienced data analysts, they can be used to set the 
lower bar the proposed approach should aim for. Finally, 
it is critical to check whether non-learning approaches are 
also suitable for the application scenario. For example, for 
intrusion and malware detection, there exist a wide range of 
methods using other detection strategies.

P7 – Inappropriate Performance Measures.   
The chosen performance measures do not account for the con-
straints of the application scenario, such as imbalanced data 
or the need to keep a low false-positive rate.

33% present

P7 – Inappropriate Performance Measures.
The chosen performance measures do not account for the constraints
of the application scenario, such as imbalanced data or the need to keep
a low false-positive rate.

Description. A wide range of performance measures are 
available and not all of them are suitable in the context of 
security. For example, when evaluating a detection system, 
it is typically insufficient to report just a single performance 
value, such as accuracy, because true-positive and false-
positive decisions are not observable. However, even more 
advanced measures may obscure experimental results in 
some application settings. Therefore, the selection of prop-
er evaluation metrics is a challenging task that requires a 
thoughtful decision.

Security implications. Inappropriate performance mea-
sures are a long-standing problem in security research, par-
ticularly in detection tasks. While true and false positives, 
for instance, provide a more detailed picture of a system’s 
performance, they can also disguise the actual precision 
when the prevalence of attacks is low.

P8 – Base Rate Fallacy.   
A large class imbalance is ignored when interpreting the per-
formance measures, leading to an overestimation of perfor-
mance.

P8 – Base Rate Fallacy.
A large class imbalance is ignored when interpreting the performance
measures leading to an overestimation of performance.

10%
present

Description. Class imbalance can easily lead to a misin-
terpretation of performance if the base rate of the negative 
class is not considered. If this class is predominant, even a 
very low false-positive rate can result in surprisingly high 
numbers of false positives. Note the difference to the previ-
ous pitfall: while P7 refers to the inappropriate description 
of performance, the base-rate fallacy is about the mislead-
ing interpretation of results. This special case is easily over-
looked in practice (see §3).

Security implications. The base rate fallacy is relevant in 
a variety of security problems, such as intrusion detection 

and website fingerprinting.5,12 As a result, it is challenging to 
realistically quantify the security and privacy threat posed 
by attackers. Similarly, the probability of installing malware 
is usually much lower than is considered in experiments on 
malware detection.18

2.4. Deployment and operation.
In the last stage of a typical machine-learning workflow, the 
developed system is deployed to tackle the underlying secu-
rity problem in practice.

P9 – Lab-Only Evaluation.   
A learning-based system is solely evaluated in a laboratory 
setting, without discussing its practical limitations.

P9 – Lab-Only Evaluation.
A learning-based system is solely evaluated in a laboratory setting, 
without discussing its practical limitations.

47% present

Description. As in all empirical disciplines, it is com-
mon to perform experiments under certain assumptions 
to demonstrate a method’s efficacy. While performing con-
trolled experiments is a legitimate way to examine specific 
aspects of an approach, it should be evaluated in a realistic 
setting whenever possible to transparently assess its capa-
bilities and showcase the open challenges that will foster 
further research.

Security implications. Many learning-based systems in 
security are evaluated solely in laboratory settings, overstat-
ing their practical impact. A common example are detection 
methods evaluated only in a closed-world setting with lim-
ited diversity and no consideration of non-stationarity. For 
example, a large number of website fingerprinting attacks 
are evaluated only in closed-world settings spanning a limit-
ed time period.12 Similarly, several learning-based malware 
detection systems have been insufficiently examined under 
realistic settings.18

P10 – Inappropriate Threat Model.   
The security of machine learning is not considered, exposing 
the system to a variety of attacks.

P10 – Inappropriate Threat Model.
The security of ma-chine learning is not considered,
exposing the system to a variety of attacks.

17% present

Description. Learning-based security systems operate in 
a hostile environment, which should be considered when 
designing these systems. Prior work in adversarial learning 
has revealed a considerable attack surface introduced by 
machine learning itself, at all stages of the workflow. Their 
broad attack surface makes these algorithms vulnerable to 
various types of attacks.7

Security implications. Including adversarial influence in 
the threat model and evaluation is often vital, as systems 
prone to attacks are not guaranteed to output trustworthy 
and meaningful results. Aside from traditional security is-
sues, it is therefore essential to also consider ML-related 
attacks. For instance, an attacker may more easily evade 
a model that relies on only a few features than a properly 
regularized model designed with security considerations 
in mind, although one should also consider domain-spe-
cific implications.19
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snooping (P3), which are at least partly present in 90% and 
73% of the papers, respectively. In more than 50% of the pa-
pers, we identify inappropriate threat models (P10), lab-only 
evaluations (P9), and inappropriate performance measures 
(P7) as at least partly present. Every paper is affected by at 
least three pitfalls, underlining the pervasiveness of such is-
sues in recent computer security research. In particular, we 
find that dataset collection is still very challenging: Some of 
the most realistic and expansive open datasets we have de-
veloped as a community are still imperfect (see §4.1).

Moreover, the presence of some pitfalls is more likely 
to be unclear from the text than others. We observe this for 
biased parameter selection (P5) when no description of the 
hyperparameters or tuning procedure is given; for spuri-
ous correlations (P4), when there is no attempt to explain a 
model’s decisions; and for data snooping (P3), when the da-
taset splitting or normalization procedure is not explicitly 
described in the text. These issues also indicate that experi-
mental settings are more difficult to reproduce due to a lack 
of information.

3.4. Feedback from authors.
To foster a discussion within our community, we have con-
tacted the authors of the selected papers and collected feed-
back on our findings. We conducted a survey with 135 au-
thors for whom contact information has been available. To 
protect the authors’ privacy and encourage an open discus-
sion, all responses have been anonymized.

The survey consists of a series of general and specific 
questions on the identified pitfalls. First, we ask the authors 
whether they have read our work and consider it helpful for 
the community. Second, for each pitfall, we collect feedback 
on whether they agree that (a) their publication might be af-
fected, (b) the pitfall frequently occurs in security papers, 
and (c) it is easy to avoid in most cases. To quantitatively as-
sess the responses, for each question we use a five-point Lik-
ert scale ranging from strongly disagree to strongly agree. We 
also provide an option of prefer not to answer and allow the 
authors to omit questions.

We have received feedback from 49 authors, yielding a re-
sponse rate of 36%. These authors correspond to 13 of the 
30 selected papers and thus represent 43% of the considered 
research. Regarding the general questions, 46 (95%) of the 
authors have read our paper and 48 (98%) agree that it helps 
to raise awareness for the identified pitfalls. For the specific 
pitfall questions, the overall agreement between the au-
thors and our findings is 63% on average, varying depending 
on the security area and pitfall. All authors agree that their 
paper may suffer from at least one of the pitfalls. On aver-
age, they indicate that 2.77 pitfalls are present in their work 
with a standard deviation of 1.53 and covering all 10 pitfalls.

When assessing the pitfalls in general, the authors es-
pecially agree that lab-only evaluations (92%), the base rate 
fallacy (77%), inappropriate performance measures (69%), 
and sampling bias (69%) frequently occur in security papers. 
Moreover, they state that inappropriate performance mea-
sures (62%), inappropriate parameter selection (62%), and 
the base rate fallacy (46%) can be easily avoided in practice, 
while the other pitfalls require more effort.

3. PREVALENCE ANALYSIS
Once we understand the pitfalls faced by learning-based se-
curity systems, it becomes necessary to assess their preva-
lence and investigate their impact on scientific advances. To 
this end, we conduct a study on 30 papers published in the 
last 10 years at the top four conferences for security-related 
research in our community. The papers have been selected 
as representative examples for our study, as they address a 
large variety of security topics and successfully apply ML to 
the corresponding research problems. A complete list of all 
selected papers can be found in the original paper.3

3.1. Review process.
Each paper is assigned two independent reviewers who assess 
the article and identify instances of the described pitfalls. 
The pool of reviewers consists of six researchers who have all 
previously published work on the topic of machine learning 
and security in at least one of the considered security confer-
ences. Reviewers do not consider any material presented out-
side the papers under analysis (aside from appendices and 
associated artifacts, such as datasets or source code). Once 
both reviewers have completed their assignments, they dis-
cuss the paper in the presence of a third reviewer who may re-
solve any disputes. In case of uncertainty, the authors are giv-
en the benefit of the doubt (for example, in case of a dispute 
between partly present and present, we assign partly present).

Throughout the process, all reviewers meet regularly to 
discuss their findings and ensure consistency between the 
pitfalls’ criteria. Moreover, these meetings have been used 
to refine the definitions and scope of pitfalls based on the 
reviewers’ experience. Following any adaptation of the crite-
ria, all completed reviews have been reevaluated by the orig-
inal reviewers—this occurred twice during our analysis. 
While cumbersome, this adaptive process of incorporating 
reviewer feedback ensures the pitfalls are comprehensive 
in describing the core issues across the state of the art. We 
note that the inter-rater reliability of reviews prior to dispute 
resolution is ​α  =  0 . 832​ using Krippendorff’s alpha, where ​
α  >  0 . 800​ indicates confidently reliable ratings.13

3.2. Assessment criteria.
For each paper, pitfalls are coarsely classified as either pres-
ent, not present, unclear from text, or does not apply. A pitfall 
may be wholly present throughout the experiments without 
remediation (present), or it may not (not present). If the au-
thors have corrected any bias or have narrowed down their 
claims to accommodate the pitfall, this is also counted as 
not present. We also introduce partly present as a category 
to account for experiments that do suffer from a pitfall, but 
where the impact has been partially addressed. If a pitfall 
is present or partly present but acknowledged in the text, we 
moderate the classification as discussed. If the reviewers are 
unable to rule out the presence of a pitfall due to missing 
information, we mark the publication as unclear from text. 
Finally, in the special case of P10, if the pitfall does not apply 
to a paper’s setting, this is considered as a separate category.

3.3. Observations.
The most prevalent pitfalls are sampling bias (P1) and data 
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Dataset collection. A common source of recent mobile 
data is the AndroZoo project,2 which collects Android apps 
from a large variety of sources, including the official Google 
Play store and several Chinese markets. At the time of writ-
ing, it includes more than 11 million Android applications 
from 18 different sources. As well as the samples them-
selves, it includes meta-information, such as the number 
of antivirus detections. Although AndroZoo is an excellent 
source for obtaining mobile apps, we demonstrate that 
experiments may suffer from severe sampling bias (P1) if 
the peculiarities of the dataset are not taken into account. 
Please note that the following discussion is not limited to 
the AndroZoo data, but is relevant for the composition of 
Android datasets in general.

Dataset analysis. In the first step, we analyze the data dis-
tribution of AndroZoo by considering the origin of an app 
and the number of antivirus detections of an Android app. 
For our analysis, we broadly divide the individual markets 
into four different origins: GooglePlay, Chinese markets, Vi-
rusShare, and all other markets.

Interestingly, we find that when sampling randomly from 
the dataset, benign applications come with a probability of 
around 80% from GooglePlay. In contrast, malicious apps 
mainly originate from Chinese markets, indicating a sam-
pling bias.

Note, however, that this sampling bias is not limited to 
AndroZoo. We identify a similar bias for the Drebin data-
set,4 which is commonly used to evaluate the performance 
of learning-based methods for Android malware detection. 
The details of the analysis of this dataset can be found in the 
original publication.3

Experimental setup. To get a better understanding of this 
finding, we conduct experiments using two datasets: For 
the first dataset (​​D​ 1​​​), we merge 10,000 benign apps from 
GooglePlay with 1,000 malicious apps from Chinese mar-
kets (Anzhi and AppChina). We then create a second dataset 
(​​D​ 2​​​) using the same 10,000 benign applications, but com-
bine them with 1,000 malware samples exclusively from 
GooglePlay. All malicious apps are detected by at least 10 
virus scanners.

Next, we train a linear support vector machine (SVM) on 
these datasets using two feature sets taken from state-of-
the-art classifiers (Drebin4 and Opseqs16).

Results. The true positive rate for Drebin and Opseqs 
drops by more than 10% and 15%, respectively, between the 

In summary, we derive three central observations from 
this survey. First, most authors agree that there is a lack 
of awareness for the identified pitfalls in our community. 
Second, they confirm that the pitfalls are widespread in se-
curity literature and there is a need for mitigating them. 
Third, a consistent understanding of the identified pitfalls 
is still lacking. As an example, several authors (44%) nei-
ther agree nor disagree on whether data snooping is easy 
to avoid, emphasizing the importance of clear definitions 
and recommendations.

3.5. Takeaways. 
We find that all of the pitfalls introduced in §2 are perva-
sive in security research, affecting between 17% and 90% of 
the selected papers. Each paper suffers from at least three 
of the pitfalls and only 22% of instances are accompanied 
by a discussion in the text. While authors may have even de-
liberately omitted a discussion of pitfalls in some cases, the 
results of our prevalence analysis overall suggest a lack of 
awareness in our community.

Although these findings point to a serious problem in re-
search, we would like to remark that all of the papers ana-
lyzed provide excellent contributions and valuable insights. 
Our objective here is not to blame researchers for stepping 
into pitfalls but to raise awareness and increase the experi-
mental quality of research on ML in security.

4. IMPACT ANALYSIS
In the previous sections, we have presented pitfalls that are 
widespread in the computer security literature. However, 
so far it remains unclear how much the individual pitfalls 
could affect experimental results and their conclusions. In 
this section, we estimate the experimental impact of some 
of these pitfalls in popular applications of machine learn-
ing in security. At the same time, we demonstrate how the 
recommendations discussed in §2 help in identifying and 
resolving these problems. For our discussion, we consider 
four popular research topics in computer security:

	˲ §4.1: Mobile malware detection (P1, P4, and P7)
	˲ §4.2: Vulnerability discovery (P2, P4, and P6)
	˲ §4.3: Source code authorship attribution (P1 and P4)
	˲ §4.4: Network intrusion detection (P6 and P9)

Remark. For this analysis, we consider state-of-the-art ap-
proaches for each security domain. We remark that the results 
within this section do not mean to criticize these approaches 
specifically; we choose them as they are representative of how 
pitfalls can impact different domains. Notably, the fact that we 
have been able to reproduce the approaches speaks highly of 
their academic standard.

4.1. Mobile malware detection.
The automatic detection of Android malware using ML is 
a particularly lively area of research. The design and evalu-
ation of such methods are delicate and may exhibit some 
of the previously discussed pitfalls. In the following, we 
discuss the effects of sampling bias (P1), spurious correla-
tions (P4), and inappropriate performance measures (P7) on 
learning-based detection in this context.

Table 1. Comparison of results for two classifiers when merging 
benign apps from Google Play with Chinese malware (D1) vs. 
sampling solely from Google Play (D2). For both classifiers, the 
detection performance drops significantly when considering apps 
only from Google Play. The standard deviation of the results ranges 
between 0–3%.

Metric 

Drebin Opseqs

D1 D2 Δ D1 D2 Δ
Accuracy 0.994 0.980 –1.4% 0.972 0.948 –2.5%

Precision 0.968 0.930 –3.9% 0.822 0.713 –13.3% 

Recall 0.964 0.846 –12.2% 0.883 0.734 –16.9%

F1-Score 0.970 0.886 –8.7% 0.851 0.722 –15.2%

MCC 0.963 0.876 –9.0% 0.836 0.695 –16.9%
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datasets ​​D​ 1​​​ and ​​D​ 2​​​, while the accuracy is only slightly af-
fected (see Table 1). Hence, the choice of the performance 
measure is crucial (P7). Interestingly, the Web address play.
google.com turns out to be one of the five most discrimina-
tive features for the benign class, suggesting that the classi-
fier has learned to distinguish the origins of Android apps, 
rather than the difference between malware and benign 
apps (P4). Although our experimental setup overestimates 
the classifiers’ performance by deliberately ignoring time 
dependencies (P3), we can still clearly observe the impact of 
the pitfalls. Note that the effect of other snooping types in 
this setting has been demonstrated in previous work.18

4.2. Vulnerability discovery.
Vulnerabilities in source code are a major threat to the se-
curity of computer systems and networks. Since the manual 
search for vulnerabilities is complex and time consuming, 
machine learning-based detection approaches have been 
proposed in recent years.25 In what follows, we show that a 
popular dataset for vulnerability detection contains arti-
facts (P4) used by a state-of-the-art method for vulnerability 
discovery, VulDeePecker.15 Surprisingly, we find that it can 
be outperformed by a simple linear classifier (P6) and dis-
cuss how VulDeePecker’s preprocessing steps make it im-
possible to decide whether some snippets contain vulner-
abilities or not (P2).

Dataset collection. For our analysis, we use the dataset 
published by Li et al.15 We focus on vulnerabilities related to 
buffers (CWE-119) and obtain 39,757 source code snippets of 
which 10,444 (26%) are labeled as containing a vulnerability.

Experimental setup. We train VulDeePecker, based on a 
recurrent neural network (RNN), to classify the code snip-
pets automatically. To this end, we replace variable names 
with generic identifiers (for example, INT2) and truncate the 
snippets to 50 tokens, as proposed in the paper.15

We use a linear SVM with bag-of-words features based 
on ​n​-grams as a baseline for VulDeePecker. To see what 
VulDeePecker has learned, we use Layerwise Relevance 
Propagation (LRP)6 to explain the predictions and assign 
each token a relevance score that indicates its importance 
for the classification.

Results. To see how the model derives its decisions, we 
analyze the 10 most important tokens for each code snip-
pet. Following this approach, we notice two things: Firstly, 
tokens such as ‘(’, ‘]’, and ‘,’ are among the most important 
features throughout the training data although they occur 
frequently in code from both classes as part of function 
calls or array initialization. Secondly, there are many gener-
ic INT* values which frequently correspond to buffer sizes. 
From this we conclude that VulDeePecker is relying on com-
binations of artifacts in the dataset and thus suffers from 
spurious correlations (P4).

To further support this finding, we show in Table 2 the 
performance of VulDeePecker compared to an SVM and an 
ensemble of standard models trained with the AutoSklearn 
library.10 We find that an SVM with 3-grams yields the best 
performance with an ​18 ×​ smaller model. This is interesting 
as the SVM uses overlapping but independent substrings (​n​
-grams), rather than the true sequential ordering of all to-

kens as for the RNN. Thus, it is likely that VulDeePecker is 
not exploiting relations in the sequence, but merely com-
bines special tokens—an insight that could have been ob-
tained by training a linear classifier (P6). Furthermore, it is 
noteworthy that both baselines provide significantly higher 
true-positive rates, although the ROC-AUC9 of all approach-
es only slightly differs.

Finally, VulDeePecker discards essential information 
during its preprocessing steps, making it impossible to 
detect vulnerabilities in certain cases. For instance, num-
bers are converted to generic tokens, which removes cru-
cial information for detecting buffer overflows: After the 
conversion, it is not possible to tell how big the buffer is 
and whether the content fits into it or not. Depending on 
the surrounding code, it can become impossible to say 
whether buffer overflows appear or not, leading to cases of 
label inaccuracy (P2).

4.3. Source code author attribution.
The task of identifying the developer based on source 
code is known as authorship attribution.8 Programming 
habits are characterized by a variety of stylistic patterns, 
so that state-of-the-art attribution methods use an ex-
pressive set of such features. These range from simple lay-
out properties to more unusual habits in the use of syntax 
and control flow. In combination with sampling bias (P1), 
this expressiveness may give rise to spurious correlations 
(P4) in current attribution methods, leading to an overes-
timation of accuracy.

Dataset collection. Recent approaches have been tested 
on data from the Google Code Jam (GCJ) programming com-
petition,1,8 where participants solve the same challenges in 
various rounds. An advantage of this dataset is that it en-
sures a classifier learns to separate stylistic patterns rather 
than merely overfitting to different challenges. We use the 
2017 GCJ dataset, which consists of 1,632 C++ files from 204 
authors, solving the same eight challenges.

Dataset analysis. We start with an analysis of the aver-
age similarity score between all files of each respective 
programmer, where the score is computed by difflib’s 
SequenceMatcher.b We find that most participants copy 
code across the challenges, that is, they reuse personal-
ized coding templates. Understandably, this results from 
the nature of the competition, where participants are 
encouraged to solve challenges quickly. These templates 
are often not used to solve the current challenges but are 
only present in case they might be needed. As this devi-
ates from real-world settings, we identify a sampling bias 
in the dataset.

Current feature sets for authorship attribution include 

Table 2. Performance of support vector machines and VulDeePecker 
on unseen data. The true-positive rate is determined at 2.9% false 
positives.

Model# parameters AUC TPR

VulDeePecker 1.2 × 106 0.984 0.818

SVM 6.6 × 104 0.986 0.963

AutoSklearn 8.5 × 105 0.982 0.894
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these templates, such that models are learned that strong-
ly focus on them as highly discriminative patterns. Howev-
er, this unused duplicate code leads to features that repre-
sent artifacts rather than coding style which are spurious 
correlations.

Experimental setup. Our evaluation on the impact of 
both pitfalls builds on the attribution methods by Abuha-
mad et al.1 and Caliskan et al.8 Both represent the state of 
the art regarding performance and comprehensiveness 
of features.

We implement a linter tool on top of Clang, an open-
source C/C++ front end for the LLVM compiler framework, 
to remove unused code that is mostly present due to the 
templates. Based on this, we design the following three 
experiments: First, we train and test a classifier on the un-
processed dataset (​​T​ b​​​) as a baseline. Second, we remove un-
used code from the respective test sets (​​T​ 1​​​), which allows 
us to test how much the learning methods focus on unused 
template code. Finally, we remove unused code from the 
training set and retrain the classifier (​​T​ 2​​​).

Results. Figure 2 presents the accuracy for both attri-
bution methods on the different experiments. Artifacts 
have a substantial impact on the attribution accuracy. If 
we remove unused code from the test set (​​T​ 1​​​), the accu-
racy drops by 48% for the two approaches. This shows both 
systems focus considerably on the unused template code. 
After retraining (​​T​ 2​​​), the average accuracy drops by 6% and 
7% for the methods of Abuhamad et al.1 and Caliskan et 
al.,8 demonstrating the reliance on artifacts for the attribu-
tion performance.

Overall, our experiments show that the impact of sam-
pling bias and spurious correlations has been underesti-
mated and reduces the accuracy considerably. At the same 
time, our results are encouraging. After accounting for ar-

tifacts, both attribution methods select features that allow 
for a more reliable identification.

4.4. Network intrusion detection.
Detecting network intrusions is one of the oldest problems 
in security and it comes as no surprise that detection of 
anomalous network traffic relies heavily on learning-based 
approaches. However, challenges in collecting real attack 
data has often led researchers to generate synthetic data 
for lab-only evaluations (P9). Here, we demonstrate how 
this data is often insufficient for justifying the use of com-
plex models (for example, neural networks) and how using a 
simpler model as a baseline would have brought these short-
comings to light (P6).

Dataset collection. We consider the dataset released 
by Mirsky et al.,17 which contains a capture of Internet of 
Things (IoT) network traffic simulating the initial activation 
and propagation of the Mirai botnet malware. The packet 
capture covers 119 minutes of traffic on a Wi-Fi network 
with three PCs and nine IoT devices.

Dataset analysis. First, we analyze the transmission vol-
ume of the captured network traffic. Figure 3 shows the 
frequency of benign and malicious packets across the cap-
ture, divided into bins of 10 seconds. This reveals a strong 
signal in the packet frequency, which is highly indicative 
of an ongoing attack. Moreover, all benign activity seems 
to halt as the attack commences, after 74 minutes, despite 
the number of devices on the network. This suggests that 
individual observations may have been merged and could 
further result in the system benefiting from spurious cor-
relations (P4).

Experimental setup. To illustrate how severe these pitfalls 
are, we consider Kitsune,17 a state-of-the-art deep learning-
based intrusion detector built on an ensemble of autoen-
coders. For each packet, 115 features are extracted that are 
input to 12 autoencoders, which themselves feed to another, 
final autoencoder operating as the anomaly detector.

As a simple baseline to compare against Kitsune, we 
choose the boxplot method,23 a common approach for iden-
tifying outliers. We process the packets using a 10-second 
sliding window and use the packet frequency per win-
dow as the sole feature. Next, we derive a lower and upper 
threshold from the clean calibration distribution: ​​τ​ low​​  = ​
Q​ 1​​ − 1 . 5 · IQR​ and ​​τ​ high​​  = ​ Q​ 3​​ + 1 . 5 · IQR​. During test-
ing, packets are marked as benign if the sliding window’s 
packet frequency is between ​​τ​ low​​​ and ​​τ​ high​​​, and malicious 
otherwise. In Figure 3, these thresholds are shown by the 
dashed gray lines.

Results. The classification performance of the autoen-
coder ensemble compared to the boxplot method is shown 
in Table 3. While the two approaches perform similarly 
in terms of ROC-AUC, the simple boxplot method outper-
forms the autoencoder ensemble at low false-positive rates 
(FPR). As well as its superior performance, the boxplot 
method is exceedingly lightweight compared to the fea-
ture extraction and test procedures of the ensemble. This 
is especially relevant as the ensemble is designed to oper-
ate on resource-constrained devices with low latency (for 
example, IoT devices).

Figure 2. Accuracy of authorship attribution after considering 
artifacts. The accuracy drops by 48% if unused code is removed from 
the test set (T1); After retraining (T2), the average accuracy still drops 
by 6% and 7%.
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Figure 3. Frequency of benign vs. malicious packets in the Mirai 
dataset.17 The Gray dashed lines show the thresholds that define 
normal traffic calculated using the simple baseline (boxplot 
method .23 The span of clean data used for calibration is highlighted 
by the light blue shaded area.
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Table 3. Comparing Kitsune,17 an autoencoder ensemble NIDS, against 
a simple baseline, boxplot method,23 for detecting a Mirai infection.

Detector
AUC TPR TPR

(FPR at 0.001) (FPR at 0)

Kitsune17 0.968 0.882 0.873

Baseline23 0.998 0.996 0.996
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Note this experiment does not intend to show that the 
boxplot method can detect an instance of Mirai operating 
in the wild, nor that Kitsune is incapable of detecting other 
attacks, but to demonstrate that an experiment without an 
appropriate baseline (P6) is insufficient to justify the complex-
ity and overhead of the ensemble. The success of the boxplot 
method also shows how simple methods can reveal issues 
with data generated for lab-only evaluations (P9). In the Mi-
rai dataset the infection is overly conspicuous; an attack in 
the wild would likely be represented by a tiny proportion of 
network traffic.

4.5. Takeaways.
The four case studies clearly demonstrate the impact of the 
considered pitfalls across four distinct security scenarios. 
Our findings show that subtle errors in the design and ex-
perimental setup of an approach can result in misleading 
or erroneous results. Despite the overall valuable contribu-
tions of the research, the frequency and severity of pitfalls 
identified in top papers clearly indicate that significantly 
more awareness is needed. We also show how pitfalls ap-
ply across multiple domains, indicating a general problem 
that cannot be attributed to only one of the security areas.

5. CONCLUSION
We identify and systematically assess ten subtle pitfalls in 
the use of machine learning in security. These issues can af-
fect the validity of research and lead to overestimating the 
performance of security systems. We find that these pitfalls 
are prevalent in security research, and demonstrate the 
impact of these pitfalls in different security applications. 
To support researchers in avoiding them, we provide rec-
ommendations that are applicable to all security domains, 
from intrusion and malware detection to vulnerability dis-
covery.3

Ultimately, we strive to improve the scientific quality 
of empirical work on ML in security. A decade after the 
seminal study of Sommer and Paxson,21 we again encour-
age the community to reach outside the closed world and 
explore the challenges and chances of embedding ML in 
real-world security systems.
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