
Evil from Within: Machine Learning Backdoors
Through Dormant Hardware Trojans

Alexander Warnecke∗†‡ , Julian Speith∗§ , Jan-Niklas Möller§ , Konrad Rieck†‡ , Christof Paar§
†Berlin Institute for the Foundations of Learning and Data (BIFOLD)

‡Technische Universität Berlin
§Max Planck Institute for Security and Privacy (MPI-SP)

Abstract—Backdoors pose a severe threat to machine learning,
as they can compromise the integrity of security-critical systems,
such as self-driving cars. While different defenses have been
proposed to address this threat, they all rely on the assumption
that the hardware accelerator executing a learning model is
trusted. This paper challenges this assumption and investigates a
backdoor attack that completely resides within such an accelerator.
Outside of the hardware, neither the learning model nor the
software is manipulated so that current defenses fail. As memory
on a hardware accelerator is limited, we utilize minimal backdoors
that deviate from the original model by a few model parameters
only. To mount the backdoor, we develop a hardware trojan that
lays dormant until it is programmed after in-field deployment.
The trojan can be provisioned with the minimal backdoor and
performs a parameter replacement only when the target model
is processed. We demonstrate the feasibility of our attack by
implanting our hardware trojan into a commercial machine-
learning accelerator and programming it with a minimal backdoor
for a traffic-sign recognition system. The backdoor affects only
30 model parameters (0.069%) with a backdoor trigger covering
6.25% of the input image, yet it reliably manipulates the
recognition once the input contains a backdoor trigger. Our
attack expands the circuit size of the accelerator by only 0.24%
and does not increase the run-time, rendering detection hardly
possible. Given the distributed hardware manufacturing process,
our work points to a new threat in machine learning that currently
eludes security mechanisms.

Index Terms—Hardware Trojans, Machine Learning Backdoors.

I. INTRODUCTION

Machine learning has become ubiquitous in recent years,
with applications ranging from traffic sign recognition [22]
over cancer detection [23] and protein folding [38] to numerous
use cases in social networks [31, 96]. This development was
driven by advances in hardware acceleration, allowing complex
learning models, such as deep neural networks, to run even on
systems with limited resources. Today, hardware acceleration is
indispensable in many systems that use machine learning. The
adoption of machine learning in practice is overshadowed by
attacks that range from adversarial examples to backdoors and
poisoning [9, 11, 65]. Previous work has explored these threats
and developed defenses of varying robustness [25, 90, 92, 99].
A key assumption is that the hardware running the learning
models is trustworthy. That is, ensuring the integrity of the
input and the learning model to realize secure machine-learning
applications in practice is deemed sufficient.

∗Both authors contributed equally.

In this paper, we challenge this assumption. Hardware manu-
facturing is far from transparent, involving opaque components
and untrusted parties. A multitude of attack vectors arise from
the design process of integrated circuits (ICs) alone [7, 39, 88]
and their use of third-party intellectual property (IP) [7, 98].
Given the complexity of modern circuits, built from billions
of nanometer-sized transistors, it is difficult (if not impossible)
to verify that an IC provides the exact logic specified in its
design. In fact, this problem has led governments to enforce
control over the hardware supply chain and subsidize domestic
manufacturing, e.g., through the European Chips Act [24] and
the US CHIPS and Science Act [75].

We exploit this opacity of hardware and explore the design
space of a backdoor attack that entirely resides within the
hardware of a machine-learning accelerator. Thereby, we inves-
tigate the threat potential posed by hardware trojans to machine-
learning acceleration. To mount a targeted backdoor attack—be
it in hardware or also just in the general case—an attacker
must know the executed learning model. However, machine-
learning accelerators such as Google’s TPU and Apple’s Neural
Engine are designed and manufactured independent of the exact
learning models they later execute. Usually, the trained learning
model does not even exist when the hardware accelerator is
being built and often the manufacturer of the accelerator and the
provider of the model are distinct entities. Therefore, we must
assume that the learning model is unknown when a hardware
trojan is inserted during hardware design or manufacturing.
Hence, this setting demands a programmable hardware trojan
design that can be updated after in-field deployment.

Before
Deployment

After
Deployment

Backdoor
Execution4Backdoor

Loading3Backdoor
Compression2Trojan

Insertion1

Fig. 1: Overview of our hardware-based backdoor attack.

Against this background, we propose a hardware trojan attack
that, during inference, selectively replaces model parameters
in the hardware. Outside the hardware, the learning model
remains unchanged; thus, defenses operating on the model

https://orcid.org/0009-0006-3617-3968
https://orcid.org/0000-0002-8408-8518
https://orcid.org/0009-0007-3006-7846
https://orcid.org/0000-0002-5054-8758
https://orcid.org/0000-0001-8681-2277

itself inevitably fail. Figure 1 shows our four-stage attack. We
use a traffic sign recognition system of a self-driving car as a
running example.

First 1 , a dormant, programmable hardware trojan is inserted
into a hardware accelerator. Potential attackers range from the
designer to a malicious supplier, which are common threat
models in hardware trojan research [6, 68, 79, 82]. At this stage,
the trojan is still dormant and does not yet affect inference.
After deployment of the accelerator 2 , the adversary obtains
the learning model and computes a minimal backdoor that
induces a misclassification whenever a certain trigger pattern
is present in the input. This stage is performed after hardware
manufacturing, for example, by extracting a model in-field [83].
Next 3 , the adversary programs the trojan with the backdoor.
This can be done via over-the-air updates or by manipulating the
car directly, e.g., in a workshop. Finally 4 , the targeted model
is executed on the accelerator, generating incorrect predictions
only if the backdoor trigger is present.

A. Related Work and Open Challenges

Machine-Learning Backdoors. A machine learning back-
door is a covertly implanted vulnerability in a model’s
architecture, designed to trigger specific behaviors or outputs
when activated by a predefined trigger signal, often leading
to malicious or unintended consequences. Gu et al. [28] show
that an attacker can implant a backdoor by injecting malicious
samples into the training dataset. Further approaches relax the
assumption of access to the training data [51], the visibility
and position of the trigger [62, 73, 74, 104], or the number of
malicious examples required [76]. Tang et al. [87] assume that
an attacker can insert additional neuron connections to implant
the backdoor. Stealthy backdoors that are inserted during model
compilation [16], model quantization [55], or implemented by
the software execution environment [47] were also proposed.

Hardware acceleration comes with the unique challenge of
being unable to hold an entire learning model in the hardware
at once due to memory limitations. As we place our trojan in
the hardware accelerator, we are constrained in the amount of
memory available for storing the parameters of the backdoored
model. Hence, our trojan can always only store a select few
parameters. Multiple attacks are optimized towards creating
backdoors with very few parameter changes compared to the
original model [70, 89]. Still, they only work for one specific
set of parameters and can lead to drops in test accuracy of up to
15% [70]. Therefore, we need a new approach that minimizes
the number of parameter changes, enables an effective attack,
achieves good classification performance, and still succeeds in
the presence of small parameter changes, e.g., when the learning
model is fine-tuned with new data. This task is complicated
by quantization of the model parameters, which maps floating
point parameters to a narrow bit width. Quantization is
frequently performed for hardware acceleration [94, 105].
Therefore, we must balance the number of changed parameters
and their amplitude.

Challenge 1: Minimal Backdoor. How can we design
a backdoor that changes as few parameters as possible
while maintaining a high classification score? Can such a
backdoor be robust even in the presence of quantization?

Hardware trojans and Fault Injection Attacks. For an
overview of hardware trojans, we refer the interested reader
to the many summaries in the area [45, 88, 100]. The idea of
hardware trojans targeting neural networks was first proposed
by Clements et al. [15] and Li et al. [46]. Other works [103]
require manipulations to the inputs to trigger the hardware
trojan which then bypasses the machine-learning accelerator
altogether. More recent trojan attacks trigger on intermediate
layer outputs [64], are inserted into the on-chip memory
controller [34], or target activation parameters [60] for accuracy
degradation. Liu et al. [49] inject glitches for untargeted
misclassification and demonstrate applicability using Xilinx
Vitis AI. Many attacks assume that the model executed on
the hardware is known during manufacturing; others require
changes to the input images or are generally inflexible when
it comes to model updates. However, a hardware accelerator
is designed model-agnosticically and can be equipped with
various learning models after shipment.

A related line of research deals with fault injection attacks
that aim to compromise learning models by changing their
parameters in memory, for example by flipping single bits.
Various works perform physical attacks [3, 10, 32, 50] and, for
example, induce the bit flips by a laser in a lab environment.
Building on the Rowhammer attack [41], multiple methods were
proposed to find the bits most suitable for an attacker to flip
for inserting backdors [70, 89] or causing severe performance
drops [5, 69, 101]. Rowhammer attacks, however, require the
attacker to have memory access and are unreliable in practice.
Gruss et al. [27] show that a single bit flip could take days to
accomplish while, at the same time, Yao et al. [101] find that
multiple bit flips are required to attack a modern quantized
neural network. Furthermore, proactive defenses against such
bit flips have recently been proposed [48].

Challenge 2: Hardware-based Attack. How can we hide
a machine-learning backdoor in hardware so it cannot
be observed from the outside? Can such a backdoor be
reliable and flexible enough to target any model?

Countermeasures and Defenses. The presence of neural
backdoors also spawned research on detection and defense
mechanisms. One line of research tries to detect whether a
trigger is present in the model, for example by finding shortcuts
between output classes [92], training meta models to classify
networks [99], or utilizing statistical properties from model
predictions [13, 86]. An orthogonal line of research tries to
detect whether a given input image contains a trigger, e.g.,
by finding anomalies in activations or latent representations
when propagating the input through the model [12, 25, 90].
Since our backdoor is only observable within the hardware
accelerator, such countermeasures are evaded by our attack.

In hardware, trojan attacks can be detected by comparison
with a trojan-free circuit [8, 68]. However, no such golden
model exists in our settings as the designer or a malicious sup-
plier inserts the trojan. Even formal verification approaches [29,
71] are ineffective as they would have to be performed by the
malicious entity. Similar arguments can be made for proof-
carrying hardware [54], which additionally suffers from scaling
issues [61]. Techniques such as information flow security
verification require at least some knowledge of the IP internals
to identify observe points [61]. The only viable option is to
analyze the circuit for malicious functionality through reverse
engineering, which is challenging on its own.

Still, the tampered hardware accelerator must perform its
regular operation without any noticeable deviations to avoid
raising suspicion. Since hardware accelerators for machine-
learning are usually stateless and do not know the context in
which they operate [72, 93], a hardware trojan must decide
for itself which parameters to replace during inference. At the
same time, the attack overhead must remain low so that the
critical path is not extended and no anomalous timings can be
observed. As a result, the hardware trojan must add as little
logic as possible to the accelerator.

Challenge 3: Unobtrusive Operation. How can a
hardware trojan inject an effective, targeted backdoor
within a stateless accelerator without raising suspicion?

B. Contributions

By overcoming these challenges, we demonstrate the practi-
cal feasibility of hardware trojan attacks on machine-learning
models in a real-world setting. We make the following
contributions:

• Hardware Trojan. We explore the design space for a
programmable hardware trojan that injects a backdoor into
a learning model upon inference on a hardware accelerator.
To this end, we propose a novel trojan design that can be
programmed independently of the hardware manufacturing
process, see Section II.

• Minimal Backdoors. We expand on the concept of
minimal backdoors for machine-learning models in the
context of hardware acceleration. These backdoors are
optimized to change as few parameters as possible while
maintaining prediction accuracy to comply with memory
limitations of the hardware platform and remain stealthy,
see Section III.

• Real-World Case Study. We show the feasibility of our
attack by trojanizing a commercial IP core for machine-
learning acceleration, i.e., the Xilinx Vitis AI DPU. Our
trojan causes stop signs to be interpreted as right-of-way,
potentially with fatal consequences if deployed in the real
world. Despite replacing only 0.069% of the parameters,
the backdoor is reliably activated by a trigger that covers
only 6.25% of the input image, see Section IV.

II. BACKDOOR ATTACK OVERVIEW

In the following section we provide an overview of our
backdoor attack by formalizing the underlying attacker model.
To this end, we continue with our running example of
backdooring a traffic-sign recognition model during execution.

A. Attacker Model

Given that the target machine-learning model is usually not
known during hardware trojan insertion, an attacker implanting
a machine-learning backdoor through a trojanized hardware
accelerator must always exploit at least two attack vectors.

First, they must be capable of implanting a programmable
hardware trojan into an accelerator for machine learning
before or during manufacturing. The hardware design process
comprises multiple stages and involves a variety of stakeholders
situated across the globe, opening up a multitude of attack
vectors. Before manufacturing, design files are sent between
companies and third-party IP cores, i.e., design files of
self-contained hardware components crafted by dedicated IP
vendors, are used to speed up the development of larger
systems-on-chip (SoCs). For example, a machine-learning
accelerator may be designed as a third-party IP core and
shipped to the integrator. The final design comprises the
individual components and is subsequently synthesized to a
gate-level circuit description. As hardware manufacturing is
often outsourced, this circuit description is sent to a fab that
finally produces the IC. Hence, a supply chain attack could be
conducted by the designer themselves by manipulating design
files, the third-party IP vendor by supplying a trojanized IP
core, an independent entity intercepting design files during
transmission, or the IC manufacturer by inserting manipulations
before fabrication, all of which are common threat models in
hardware trojan research [6, 68, 79, 82]. A single rogue entity
often suffices for a successful trojan attack.

Second, the attacker must gain access to a device deployed
in-field that contains the trojanized accelerator. They must then
extract the learning model [83], insert a minimal backdoor, and
program the backdoor to the trojanized accelerator, thereby
activating the trojan. In the case of a car, this could be done
during a routine inspection, by breaking into the car, gaining
remote access, or infiltrating the deployer of the learning model.
An attacker might want to provision a hardware trojan in all
vehicles, but upload the fatal backdoor only to selected targets.
For a successful attack, the adversary does not require any
knowledge of the training data.

Our attacker model implies significant capabilities. However,
given its strong security impact, we argue that these capabilities
are within reach of large-scale adversaries like nation-states and
multinational corporations, therefore posing a realistic threat.
This especially becomes apparent when considering military [4]
and aerospace [42] applications, in which machine-learning
and hardware acceleration thereof are increasingly utilized for
mission-critical functionalities. Please note that manipulation of
the hardware and the backdoor construction can be conducted
by different entities with no detailed knowledge of the other
attack stages.

D

H

I

J

K
"Right

of
Way"

Backdoor
Execution4

F

G

H

3 Backdoor
Loading

D

E

F

2 Backdoor
Compression

A

B

C

1 Trojan
Insertion

Fig. 2: The four stages of our proposed trojan attack.

B. Attack Outline

Figure 2 shows a detailed overview on the processing steps
of our attack along the four stages outlined in Figure 1.

1 Trojan Insertion. Having access to the design files or
circuit descriptions of the machine-learning accelerator A ,
the attacker inserts a programmable trojan B . This trojan is
designed to swap specific parameters while they are streamed to
the accelerator to insert a minimal backdoor. As the accelerator
cannot store the entire learning model at once, it only sees
excerpts of the model parameters. Also, it has no understanding
of the model architecture. Hence, the trojan needs to decide for
itself when to replace the incoming parameters, without know-
ing their context. To minimize the attack footprint, only very
few parameters shall be replaced. At this stage, the attacker only
adds circuitry to store, locate, and exchange affected parameters,
but does not yet load the manipulated parameters. The trojan
thus remains inactive until it is programmed with the backdoor.
For this, the attacker provisions a programming interface that
enables loading the manipulated parameters to the hardware
even after deployment. Finally, the trojanized accelerator is
manufactured C by following the regular hardware design and
manufacturing process.

2 Backdoor Compression. The attacker gains access to
the trained (and potentially quantized) learning model D of a
traffic sign recognition system. Using a copy of the original
model, they implant a backdoor mechanism resulting in a
backdoored learning model E . Whenever a specific trigger
pattern is present in the input image of a source class (e.g.,
“stop sign”), the backdoored model will predict a specific target
class (e.g., “right of way”) with high probability. Since our
hardware trojan mandates that only a minimal number of model
parameters be altered, we propose a novel backdoor class that
penalizes a large number of parameter changes. Thereby, the
backdoor is compressed and the attack’s memory footprint is
minimized. Finally, the attacker compares the original model
and the backdoored one to extract the parameters F to be
replaced by the trojan.

3 Backdoor Loading. To arm the hardware trojan, the
attacker converts the modified parameters F to the format
that is used by the hardware accelerator. Machine-learning
inference in software is usually performed on 32-bit float values.
However, as these are inefficient in hardware, quantization [36,
94, 97, 105] is often employed to reduce the bit width and
instead operate on fixed-point values. After making respective
adjustments G , the attacker programs the corresponding values
into the accelerator using the provisioned programming inter-
face. From now on, the trojan is active and will deploy the
backdoor parameters whenever the target model is executed
on the trojanized hardware accelerator H .

4 Backdoor Execution. During inference, the original
model D is executed in-field by a machine-learning software J

on the victim system, e.g., an electronic control unit (ECU) in
a car, to perform classification tasks on input data I such as
pictures of traffic signs. To perform inference efficiently, the
software makes use of the (trojanized) hardware accelerator H

and streams to it the model parameters and input data over a
sequence of computations. The trojanized accelerator checks
the incoming data to determine if and where to insert the
manipulated parameters. If the data matches an entry in a
list of manipulations, the trojan substitutes the respective
parameter before the requested computation is executed. Once
programmed, the trojan is only activated if the target model
is streamed to the accelerator. For every other learning model,
it remains dormant. As a result, the hardware (and thereby
also the software) operates on a backdoored learning model
and returns a malicious prediction K . Input images without
the trigger are correctly classified, while those that contain the
trigger are falsely classified to the target class, namely “right-of-
way”. Note that the manipulation is performed entirely within
the hardware—hidden from the victim who seemingly executes
a trojan-free model. Cryptographic checks applied to the model
are ineffective in detecting our attack, as the model remains
unaltered outside the accelerator.

III. MINIMAL BACKDOORS

For a successful hardware trojan attack, the attacker must
specify the model parameters to be manipulated as well as
their new (malicious) values. Our trojan requires the backdoor
to be realized by exchanging as few parameters as possible
while still ensuring a reliable backdoor. Hence, we construct a
minimal backdoor, which builds on a regularized and sparse
update of model parameters.

A. From Learning to Backdoors

Before presenting minimal backdoors, we briefly describe
the learning process of neural networks and how it can be
adapted to include backdoor functionality.

Neural Networks. A neural network for classification is a
parameterized function fθ(x) that processes an input vector
x ∈ Rd and maps it to one of c classes. The model parameters
θ ∈ Rm (or weights) define the network structure and control
its computations. In supervised learning, they are determined
based on training data D =

{
(xi, yi)

}n

i=1
consisting of n

examples xi with labels yi. The parameters are adjusted so
that fθ(xi) = yi for as many i as possible. This is achieved
by optimizing a loss function ℓ

(
fθ(x), y, θ

)
that measures the

difference between a prediction fθ(x) and the true label y. The
optimal parameters θ∗ can thus be defined as

θ∗ = argmin
θ∈Rm

L(θ,D) = argmin
θ∈Rm

n∑
i=1

ℓ
(
fθ(xi), yi, θ

)
.

For deep neural networks, solutions for θ∗ can only be
obtained approximately by using training algorithms like
stochastic gradient descent (SGD) which compute

θt+1 = θt − τ∇θℓ
(
fθ(xj), yj , θ

)
for every pair (xj , yj). That is, the parameters are adjusted by
moving them into the direction of the steepest descent of ℓ
weighted by the learning rate τ until the total loss L converges.

Quantization. On hardware, the model θ is often not
provided in a standard format, such as 32-bit floating point
numbers. Instead, the parameters are typically reduced in size
and precision, a process called quantization [36, 97]. This
compression reduces memory requirements and speeds up
inference, as the computation of fθ(x) can benefit from efficient
integer and fixed-point arithmetic in hardware, for example,
for matrix multiplication and addition.

Given a bit width b, quantization maps the model parameters
from their original range [α, β] to integers in [−2b−1, 2b−1−1].
Let us denote the standard floor function by ⌊x⌋, the scale as
s = (β−α)/(2b−1), and the zero point by p0 = −

⌊
α·s

⌋
−2b−1.

An affine quantization of a real number a is then defined as

q(a) =
⌊a
s
+ p0

⌋
b

with the inverse mapping being r(q) =
(
q − p0)s. Here, ⌊a⌋b

denotes a clipped floor function that maps values outside of the
quantization range to the corresponding upper or lower bound.
In this simple quantization scheme, the scale determines the

granularity and p0 corresponds to the point that the zero value
is mapped to. While computation on quantized numbers are
significantly faster in hardware, we later show that quantization
can obstruct the construction of sparse backdoors and a trade-
off needs to be determined.

Machine Learning Backdoors. Backdoors are a well-known
security threat in machine learning. The goal of these attacks is
to make a learning model predict a selected class yt whenever
a given trigger T is present in the input. If the attacker can
manipulate the training data, they can easily insert examples
of the form (x + T, yt) where the trigger T is added to the
inputs [28]. However, in our setting, only the model parameters
can be modified and hence more recent backdooring techniques
must be applied [51, 76, 102]. In particular, our attack generates
artificial input vectors x̃ activating selected classes of the neural
network and performs SGD updates with (x̃, y) and (x̃+T, yt)
to create a backdoored model [21, 77].

Crafting Minimal Backdoors Finding a minimal backdoor
can be phrased as an optimization problem aiming to determine
a minimal parameter change δ that is added to the original
parameters θ∗, so that the backdoor becomes active in presence
of the trigger T . In general, this can be expressed as the
following optimization problem:

min
δ

∥δ∥0

s.t. fθ∗+δ(x) = ys,

fθ∗+δ(x+ T) = yt ∀x ∈ F.

(1)

Here, F is a set of data points from the source class, T is the
trigger that is added to an image, ys is the source class and yt
is the target class, which the trojan shall predict if the trigger
is present, and ∥δ∥0 is the number of entries in δ that are non-
zero. Equation 1 is related to adversarial examples [11, 26]
but aims for a minimal perturbation to the model parameters
instead of the input x.

Backdoor Insertion. To insert the backdoor, we fine-tune the
parameters θ∗ by using the samples in F to obtain a solution
for Equation 1 by solving

argmin
θ∈Rm

∑
x∈F

ℓ
(
f̃θ(x), ys, θ

)
+ ℓ

(
f̃θ(x+ T), yt, θ

)
, (2)

where f̃ indicates that all layers except the final one are frozen.
Similar to Liu et al. [51], we design the trigger T to boost

the activation of a single neuron in the network. This is
advantageous when aiming for minimal backdoors for multiple
reasons: First, the highly excited neuron leads to sparser
parameter changes since the majority of changes relate to
this neuron. Second, freezing all but the final layer prevents
many parameter changes that would otherwise be induced
during optimization. To further minimize the backdoor, we use
adaptive neuron selection, update regularization, and backdoor
pruning, all of which we explain in the following.

Adaptive Neuron Selection. At the heart of the attack from
Liu et al. [51] is a neuron that is overexcited in presence of
the trigger. They suggest to target the neuron with highest

connectivity, i.e., if the weights w1,i, . . . , wM,i are connections
to a neuron ni in the target layer, we choose nk with k =
maxi

∑
j |wj,i|. This formalization, however, takes neither the

trigger nor any model parameters into account. Therefore,
we propose an adaptive neuron selection scheme leveraging
gradient information to find an optimal neuron with respect to
a given trigger and model. To this end, we place the trigger T
on an empty image and compute

aj =
∑
i

∣∣∣∂nj

∂ti

∣∣∣
for every target neuron nj , where ti are the pixels of T .
We choose the neuron with the highest aj over all j. This
corresponds to the neuron that can be best influenced by the
trigger and model at hand, thus requiring minimal changes to
be adapted to our backdoor.

Update Regularization. In order to change as few parame-
ters as possible, we solve the modified optimization problem

argmin
δ∈Rm

∑
x∈F

ℓ
(
f̃θ∗+δ(x), ys, θ

∗)
+ ℓ

(
f̃θ∗+δ(x+ T), yt, θ

∗)+ λ∥δ∥p,
(3)

which penalizes deviations of the new model parameters from
θ∗. Natural choices for p are {0, 1, 2} where each Lp norm
leads to different behavior. For p ∈ {1, 2}, the regularization
penalizes large deviations from θ∗ whereas p = 0 allows
unbounded deviations but penalizes every existing deviation.
We will later see how the choice of p affects the optimization.

Equation 3 can be optimized with SGD for p ∈ {1, 2}. For
p = 0, however, the regularization term is not differentiable any-
more. Although removing neurons [44, 52, 95] or weights [30,
56, 91] of a network—also called pruning—is connected to
minimizing the L0 norm, such approaches are often performed
post training. Instead, for backdoor insertion, we perform
L0 regularization during optimization [53, 81]. We follow
Louizos et al. [53] and transform the parameters using gates z
by computing the element-wise product θ̃ = z⊙θ. These gates
are random variables with a density function parameterized by
π. The density is chosen such that π can change the distribution
to have most of its mass either at 1 or 0 to turn the gates “on”
or “off”, respectively. As long as the density is continuous,
the value of π for each parameter can be incorporated into the
optimization problem to ensure that as few gates as possible
are turned “on”. After optimization, we sample the binary gates
to obtain a final mask for the last layer.

Backdoor Pruning. Solving the optimization problem
in Equation 3 yields a vector δ of parameter changes that can
be added to the original parameters θ∗ to obtain a backdoored
model. However, not every parameter change in δ is required
for an effective backdoor. To find the minimal number of
required parameter changes, we prune the parameters of the
backdoored model: First, we sort the parameter changes |δ| in
decreasing order to obtain δ(1), . . . , δ(m). Starting with δ(1),
we sequentially add changes to the corresponding parameters
in θ∗ to obtain a new model between θ∗ and θ∗ + δ. Using

unseen data, we compute the success rate (i.e., the fraction
of data which is classified as yt when the trigger is present)
and the accuracy. Thereby, we determine the optimal number
of parameter changes as the backdoor effectiveness increases
continuously.

B. Evaluation

Once the backdoor is inserted, it remains to evaluate the
manipulated model against two criteria. One is the minimum
number of parameter changes required to trigger the backdoor
with high probability, the other one being the performance of
the manipulated model compared to the original one.

Dataset and Models. We use the German Traffic Sign
dataset [33] to simulate our attack in an automtotive setting.
For this, we scale all images to a resolution of 200× 200× 3
pixels and split the dataset into training, validation, and test
data. For now, the trigger size is fixed to 30× 30× 3 pixels
(2.25% of the image area) and we train a VGG16 model [78]
with 1024 dense units in the final layers.

Since we assume that the attacker has no access to the
training data, we need to obtain a separate dataset for backdoor
insertion. While Liu et al. [51] create artificial training images,
we take 30 additional pictures of stop signs in our local city
and insert the backdoor by solving the optimization problem
in Equation 3 using SGD optimization for 300 epochs. We
select SGD optimization, because other optimization algorithms
like RMSProp or Adam produced significantly more parameter
changes in our experiments. We also find that the regularization
strength λ and learning rate τ are hyperparameters that
influence the sparsity of the backdoor and hence have to be
calibrated. For this, we perform a grid search in [0.01, 5] for
λ and [0.0001, 0.001] for τ .

Parameter Distribution Change. When inspecting the
changes to the clean model θ∗ induced by the backdoor, we
find that the majority of them affect parameters connected to
the output neuron of class yt. This is not true for the baseline
approach of Liu et al. [51], which induces larger changes to
other parameters as well. Figure 3 (left) depicts a boxplot of the
parameter distribution of the target layer that has been chosen
for backdoor insertion for θ∗ and the backdoored models in
respect to different regularization norms. For p ∈ {0, 1}, we
observe parameter outliers compared to the distribution of θ∗,
i.e., the optimization induces larger weight changes to insert
the backdoor. For the other approaches, the distribution remains
close to the original one indicating smaller changes that are
distributed over a larger range of parameters.

Sparsity. Figure 3 (mid) shows the evolution of the trigger
success rate when following our pruning approach. This
confirms observations from the parameter distributions in
the pruning process: L0 and L1 regularization induce larger
parameter changes on fewer parameters and achieve sparser
backdoors. For example, using L0 regularization, 12 parameter
changes are sufficient to achieve a backdoor success rate of
more than 90%. The approach of Liu et al. [51] induces more
than 1000 weight changes and thereby exhibits the highest

θ∗ Liu L0 L1 L2

0

0.1

0.2

pa
ra

m
et

er
va

lu
es

22 24 26 28 210
0

20

40

60

80

100

replaced parameters

su
cc

es
s

ra
te

(%
)

Liu et al. L0 L1 L2

22 24 26 28
0

20

40

60

80

100

replaced parameters

su
cc

es
s

ra
te

(%
)

λ = 0.01

λ = 0.1

λ = 1.0

λ = 5.0

Fig. 3: Left: Box-plot of the parameter distribution in the final layer before and after backdoor insertion. Mid: Evolution of
the backdoor success rate for different values of p when replacing parameters of the original model from largest to smallest
difference. Right: Evolution of the backdoor success rate for p = 1 and different regularization strengths λ.

change ratio of all methods. Furthermore, the final success
rate of the regularized backdoor does not reach 100%. As
shown in Figure 3 (right) for p = 1, it is bounded by the
regularization strength λ. Hence, the attacker must balance
the trade-off between backdoor sparsity and success rate. To
facilitate comparability, we propose a desired success rate
(DSR) of 90% and measure the sparsity ∆S of the backdoors
as the minimum number of parameter changes required to
obtain the DSR.

Quantization as a Hurdle. The quantization output is
determined by the bit-width b and the range of parameters to
be quantized, [α, β]. These parameters determine the discrete
2b−1 bins between α and β into which the floating-point values
are assigned. From the parameter distribution in Figure 3, we
see that quantization can be obstructive for our attack because
a large parameter change, as observed for L0 regularization,
can significantly affect β and thereby the entire quantization
output. Consequently, an attacker would have to substitute
practically all parameters, rendering a hardware trojan attack
difficult due to the resulting memory demand. We denote
by ∆Q the total number of parameters that are changed
after performing quantization on the model containing the
backdoor. Ideally, we have ∆S = ∆Q, i.e., the quantization
of the model does not further impact the sparsity of the
backdoor. If ∆S < ∆Q, quantization increases the number
of parameter changes, thereby reducing the stealthiness and
memory efficiency of the attack. To compute ∆Q, we use
the quantizer shipped with the Xilinx Vitis AI toolkit in its
standard configuration and count the differences in bytes.

Influence of Trigger Size, Model, and Dataset. In the
following, we evaluate the influence of the trigger size, model
architecture, and dataset on the sparsity ∆S, the number of
parameter changes after quantization ∆Q, and the difference
in test accuracy ∆A compared to the original θ∗, see Table I
and Table II.

Size of the Trigger. To measure the impact of the trigger
size, we use triggers covering between 1% and 6.25% of the
input images. The corresponding results are shown in Table Ia.

Larger triggers ease hardware trojan implementation, because
sparsity and accuracy improve with increasing size of T . This
confirms our observation that the target neuron can be excited
stronger by larger triggers in the input. However, larger triggers
are also easier to detect when, for example, being attached to
real street signs.
L0 regularization results in extremely sparse backdoors. For

example, only three changes are sufficient to achieve 90%
DSR for a trigger covering 4% of the input image. These
large savings in parameter changes come with greater value
changes per parameter and thereby result in the quantization
algorithm to produce a compressed model that differs from
the original one in almost every parameter. Hence, L1 and L2

regularization are a better fit since they reduce the parameter
changes compared to the baseline method of Liu et al. [51]
significantly while keeping value changes small enough to not
impact quantization of unchanged parameters.

Model Architecture. Next, we investigate the influence of
different model architectures, namely VGG-13 [78], VGG-
19 [78], and AlexNet [43], for a trigger size of 30× 30 pixels.
All three networks feature a different number of layers and
4096 units in the final layer. Hence, the number of potential
target neurons is much larger compared to VGG-16. From
Table Ib, we observe that the generated backdoors are less
sparse, likely due to the higher number of neurons in the final
layers. Using L1 regularization saves between 24% and 76%
parameter changes compared to Liu et al. [51] while being
resistant to quantization. Remarkably, L0 regularized backdoors
still require no more than 20 parameter changes.

Dataset. Finally, we apply our attack to a face recognition
model by Parkhi et al. [66], which was trained on 2.6 million
images. As this model comes with 2 622 output classes, it
has about 60× more parameters in the final layer than the
traffic sign models. Here, we create artificial images that are
assigned to our source class with high probability [21] to
conduct the fine-tuning from Equation 3. We follow the work
of Liu et al. [51] and use a trigger size of 60× 60 pixels (7%
of the input size) and report the results in Table II. Despite the

TABLE I: Impact of (a) trigger size and (b) model type on the difference in test accuracy ∆A in percentage points, sparsity
∆S for a DSR of 90%, and parameter changes after quantization ∆Q using different regularization techniques.

Trigger Size Liu et al. L0 Regularization L1 Regularization L2 Regularization

(% of image) ∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q

20× 20 (1.00%) 1.84% 1339 1339 1.15% 139 43 739 0.21% 617 617 0.18% 813 813
30× 30 (2.25%) 1.48% 1092 1092 0.09% 13 43 739 0.05% 80 80 0.08% 202 202
40× 40 (4.00%) 0.05% 87 87 0.20% 3 43 739 0.02% 63 63 0.00% 74 74
50× 50 (6.25%) 0.11% 60 60 0.48% 2 43 739 0.00% 7 7 0.00% 12 12

(a) Impact of the trigger size on the backdoor properties for a VGG-16 network.

Model Liu et al. L0 Regularization L1 Regularization L2 Regularization

∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q ∆A ∆S ∆Q

AlexNet 0.20% 860 860 0.39% 19 174 093 0.18% 654 654 0.05% 713 713
VGG-13 1.44% 2018 2018 0.98% 7 173 684 1.20% 564 564 1.20% 758 758
VGG-19 1.46% 1366 1366 1.81% 10 176 118 1.85% 499 499 1.38% 905 905

(b) Impact of different architectures on the backdoor for a fixed trigger size of 30× 30 pixels.

TABLE II: Difference in test accuracy ∆A, sparsity ∆S , and
changes after quantization ∆Q for a face recognition dataset.

∆A ∆S ∆Q
Liu et al. 0.12% 180 180
L0 Regularization 4.01% 4 10 606 853
L1 Regularization 0.80% 5 5
L2 Regularization 0.16% 341 341

optimization problem covering more than 10 million parameters,
the regularized backdoors are extremely sparse with only 5
affected parameters for L1 regularization, even in presence
of quantization. Compared to the baseline of Liu et al. [51],
the backdoor is compressed by 97%. We conclude that sparse
backdoors exist independent of the dataset and model size.

Robustness to Parameter Changes. Our attacker model
assumes that the adversary can deploy a backdoor for a specific
learning model that is later executed on a trojanized machine-
learning accelerator. However, since the deployed model may
change over time, e.g., because of fine-tuning as part of a
software update, we investigate the implications of small
parameter changes on the effectiveness of our backdoor. To
this end, we fine-tune the original model for 20 epochs using
SGD and insert a backdoor after each epoch to evaluate our
attack. For fine-tuning, we utilize 70% of our test data (4 400
images) and choose a learning rate that inflicts changes to the
model but maintains its performance.

Figure 4 depicts the mean success rate after fine-tuning three
different learning models on unseen data for 20 epochs. We
observe that the backdoors still maintain a high success rate
despite the changes inflicted upon the model. Hence, our attack
appears to be robust against parameter changes that could occur
in practice. Thus far, our trojan only becomes active if the
original model is executed. Given these results on the backdoor
robustness, this rule could be relaxed so that the trojan activates
even if only the parameters’ most significant bits match those
of the original model.

AlexNet VGG-13 VGG-19

60

80

100 92
88 9091 89 90

79

89 9090 88 89

Pe
rc

en
ta

ge
(%

)

SR (Liu et al.) SR (L0) SR (L1) SR (L2)

Fig. 4: Mean success rate (SR) of the backdoor after fine-tuning
for 20 epochs.

IV. CASE STUDY WITH THE XILINX VITIS AI

We demonstrate our attack using Xilinx Vitis AI [1] for
inference acceleration on a Zynq UltraScale+ MPSoC ZCU104
device. We chose this field-programmable gate array (FPGA)
platform for demonstration as it can be employed for safety-
sensitive applications and, at the same time, is accessible
to researchers. Also, importantly, our FPGA case study is a
good approximation of a similar application-specific integrated
circuit (ASIC)-based trojan, which could be employed in high-
volume applications. Google’s TPU [37], for example, inhibits
an architecture similar to the one of Xilinx.

A. DPU Architecture

Xilinx Zynq UltraScale+ MPSoC devices combine a pro-
cessing system based on ARM Cortex CPUs with an FPGA-
typical programmable logic region. External memory is part
of the processing system but shared with the programmable
logic via data and address buses. The CPUs are together
referred to as application processing unit (APU). The deep
learning processing unit (DPU) is a commercial machine-
learning accelerator IP core that can be implemented in the
programmable logic. Its Verilog description is available on
GitHub [2] but is encrypted according to IEEE standard
1735 [35]. However, this standard is susceptible to oracle
attacks [14] and key extraction [80]. Hence, recovery, reverse

engineering, manipulation, and subsequent re-encryption of the
protected IP is feasible.

DPU. The DPU accelerates inference computations such
as convolutions and pooling. To achieve this, it processes
instructions to load, store, or operate on data. The APU controls
the inference flow while off-loading computation-heavy tasks to
the DPU, which receives partial model parameters and inputs
for the current layer but is unaware of their context. The
DPU comprises one or more acceleration cores as well as
shared configuration and status registers, see Figure 5. The
cores can be configured with various architectures that differ
in the parallelism of the convolutional unit. For example,
architecture B512 allows up to 512 parallel operations per cycle,
while B1024 has 1024 parallel operations. Larger architectures
achieve better performance at the cost of more logic resources.
The DPU communicates with the processing system via buses
for configuration (conf_bus), instructions (inst_bus), and
data (data_bus). Each core features one bus for instructions
and one or more data buses. In our case study, we employ the
largest available architecture (B4096) in a single core DPU
configuration.

Processing
System (PS)

Deep Learning
Processing Unit (DPU)

Application
Processing
Unit (APU)

Shared
Memory

Core 0

Core 1

Configuration &
Status Register

in
st
_b
us

co
nfi

g_
bu

s
da
ta
_b
us

Fig. 5: Top-level view of a DPU with two processing cores
and its connectivity to the processing system.

DPU Core. Within each DPU core, the inst_bus is
connected to an instruction scheduler that controls the memory
management and compute engines, see Figure 6. The model
parameters and input data for the current layer are transmitted
from shared memory through the data_bus that is connected
to the LOAD and STORE engines. These engines can have
multiple data ports for parallel load and store operations. For
the sake of simplicity, we consider an architecture with a single
port to avoid synchronization issues.

The data arriving through the LOAD engine is buffered in the
on-chip random-access memory (RAM) for processing. This
makes the LOAD engine a promising attack target, as the buffer
enables us to replace model parameters for backdoor insertion
before the actual computation begins. Once data has been
written to the buffer, depending on the requested DPU operation,
either the CONV engine or the arithmetic logic unit (ALU)
takes over. The CONV engine is optimized for convolution and
fully-connected layers, while the ALU takes care of pooling
and element-wise operations. Once all computations on the

buffered data are completed, the APU instructs the STORE
engine to write the results to shared memory. During inference,
the APU iteratively queries the DPU until all layers of the
learning model have been processed.

DPU Core

LOAD
Engine

In
st
ru

ct
io
n

Sc
he

du
le
r

CONV
Engine ALU

On-Chip RAM

STORE
Engine

data_bus

in
st
_b
us

Fig. 6: Inside view of a DPU core with a single data port.

Logical Memory Layout. The DPU on-chip memory is
organized in RAM banks comprising 2048 memory lines each,
see Figure 7. The number of banks and the size of each memory
line depend on the DPU architecture. For B4096, there are
34 banks and each memory line is 16 bytes wide. A bank is
uniquely identified by the bank_id and a memory line by
the bank_addr. Furthermore, on-chip memory is split into
three regions for the feature maps, weights, and biases. The
assignment of banks to regions is fixed. For the target DPU
configuration, the first 16 banks are reserved for feature maps,
the next 17 for weights, and the last one for biases.

bank_0
…

…

line_0

line_2047
…bank_15

bank_16

bank_32
bank_33

fe
at
ur
e
m
ap

w
ei
gh

ts
bi
as

Fig. 7: Logical memory layout of the on-chip RAM for the
employed DPU configuration.

LOAD Engine. The LOAD engine retrieves data from shared
memory, see Figure 8 for a high-level overview. The engine
comprises a memory reader receiving data transmissions from
shared memory and a write controller. The memory reader
finite state machine (FSM) parses load instructions received
via the inst_bus and passes bank_id, bank_addr, and
the data from the data_bus to the write controller. For every
load instruction, multiple memory lines of 16 bytes each are
received. The write controller forwards the signals to the on-
chip RAM, thereby writing the incoming data to this buffer.

Memory Reader FSM. The abstracted memory reader FSM
of the LOAD engine comprises five distinct states, see Figure 9.
Some sub-states are omitted for clarity. Once a new load

LOAD Engine

FSM

Write
Ctrl

Memory Reader

On-Chip
RAM

Trojan
ROM

Shift
Reg

data_bus

da
ta da
ta

ct
rl

ba
nk

_i
d

ba
nk

_a
dd

r

in
st
ru
ct
io
n

bank_id, bank_addr

1

0

Fig. 8: Simplified illustration of the DPU LOAD engine
including the added trojan logic (in red).

instruction is received via the inst_bus, the memory reader
assumes the CFG state to receive data transmissions through
the data_bus in consecutive data transfers. Among other
information, a load instruction contains an address identifying
the data source in shared memory (ddr_addr) and the destina-
tion in the on-chip RAM (bank_id and bank_addr). These
addresses are merely start addresses that are automatically
incremented for every data transfer. Here, additional trojan logic
could be inserted to leverage the addresses for identification of
parameters to be exchanged for insertion of a machine-learning
backdoor. Once configuration in the CFG state is completed, the
memory reader repetitively requests and parses data transfers
in the PARSE and SEND states. Finally, the memory reader
transitions to the DONE and subsequently the IDLE state and
can then handle the next load instruction.

IDLE

CFG

PARSESEND

DONE

next data
transfer request

config
completed

load instruction
received

load instruction
processed

all data
requests
completed

data transfer
request parsed

Fig. 9: State graph of the FSM controlling the memory reader
of the LOAD engine in a DPU core. Hardware trojan logic is
added to the CFG state.

B. Trojanizing the DPU

Trojan Insertion. Our programmable trojan resides in the
memory reader of the LOAD engine, see Figure 8. It comprises
a read-only memory (ROM), additions to an FSM, a shift
register, and a multiplexer (MUX). Some control logic is
omitted for clarity.

Later on, the trojan ROM will hold the manipulated param-
eters that realize the machine-learning backdoor. Given the

programmable nature of FPGAs, the ROM can be updated
via the bitstream. Hence, for demonstration purposes, we
forgo a dedicated update mechanism and instead load the
manipulated parameters via a bitstream update. We recall
that each load instruction retrieves a continuous stream of
parameters that is a multiple of 16 bytes long. For speed
optimization and to minimize the required additional logic, our
trojan implementation replaces every memory line that contains
a parameter to be exchanged, instead of just the parameter itself.
Because our backdoor requires only few parameter changes
that often even reside within the data loaded by the same load
instruction, the resulting memory overhead is negligible.

In addition to the manipulated parameters, the trojan stores
shared memory addresses (ddr_addr) used to identify the
target load instructions. Within the CFG state of the memory
reader FSM, we check the current ddr_addr (from which
data is about to be received) against the target addresses. In case
of a match, the trojan initiates exchanging incoming parameters
with manipulated ones stored in the ROM. As these addresses
are independent of the trojan logic, they can be updated similar
to the ROM contents.

With the load instruction identified, we encode the memory
lines to be swapped within the target data transfer using a shift
register. Due to the limited number of parameter changes, not
all of the 64 memory lines retrieved by one load instruction
must be replaced. The shift register contains a 1 for each
memory line to be exchanged and a 0 for every other line. It
is shifted for each data transfer, i.e., every received memory
line. The shift register output is used together with the FSM
output to activate the parameter exchange by controlling the
ROM and the MUX.

Upon activation of the parameter exchange, the MUX
forwards the backdoor parameters obtained from the trojan
ROM to the write controller and finally to the on-chip
RAM. Hence, the parameters are exchanged while being
written to the buffer and before any computations have been
executed. Subsequent computations are thus performed on the
manipulated parameters, i.e., using the backdoored learning
model. These changes are invisible outside the accelerator.

Backdoor Compression. For inference on the DPU, Vitis AI
performs 8-bit quantization on the parameters and subsequently
compiles the quantized model into a computation graph using
the Xilinx intermediate representation (XIR). This graph can be
serialized into and de-serialized from a proprietary .xmodel
file after quantization and compilation. Such a file contains the
layers of the model to be executed and the quantized model
parameters. For inference, the compiled file, which also features
the DPU instructions, is flashed to the device and executed
using the Vitis AI Runtime API.

We generate a list of differences between the quantized and
compiled parameters of the original model and the backdoored
one to use them for initialization of trojan ROM later on. To
determine these differences, we compare the .xmodel files
of both models. A quantized .xmodel stores the parameters
as 16-bit floats in contrast to the compiled file which uses 8-bit
fixed-point values. Furthermore, the compiled file stores the

(a)

20 40 60 80 100
25

50

75

100

Replaced parameters

Pe
rc

en
ta

ge
[%

]

Success Rate
Accuracy

(b)

0 20 40 60 80 100
0

0.5

1

1.5

Replaced parameters

O
ve

rh
ea

d
[%

]

LUTs
FFs
LUT-RAM

Fig. 10: (a) Success rate and test accuracy for backdoored
variants of the traffic sign recognition model when being
executed on the Xilinx Vitis AI DPU. (b) Hardware trojan
overhead required to realize the respective number of weight
replacements. The original DPU utilizes 37 379 LUTs, 6 440
LUT-RAM, and 90 309 FFs.

parameters in an order that is optimized for the shared memory
layout. While the quantized parameters can still be read using
Xilinx tools, this not possible for a compiled .xmodel file. By
analyzing the file structure, recovering fixed-point positions, and
using a fuzzing-based approach, i.e., generating and comparing
compiled .xmodel files for user-defined models, we were
able to locate the compiled parameters and automate their
extraction.

Backdoor Loading. Having computed the model differences,
we reverse-engineered the order in which the parameters are
flashed to shared memory using known test patterns, as this
order differs from the one in which the compiled parameters
are kept in the .xmodel file. Finally, we initialized the ROM
with the manipulated parameters through a bitstream update.

C. Evaluation

We evaluated our attack on the Xilinx Zynq UltraScale+
MPSoC ZCU104 by running inference on the trojanized DPU
using the test data from Section III-B. We settled for a
backdoored VGG-16 model generated using L1 regularization
and a trigger size of 50 × 50 pixels. This setup requires
seven weight changes to achieve a trigger DSR of 90% before
quantization, see Table Ia.

Figure 10a shows the trigger success rate and test accuracy
of the backdoor after quantization. The original model suffers

a minor accuracy loss of 3% solely due to quantization
(from 97.43% to 94.49%). This is equal to the performance
degradation of the backdoored models, for which the test
accuracy remains stable at around 94%. As quantization causes
deterioration of the trigger success rate compared to the
90% DSR achieved with seven parameter changes before, we
gradually increase the number of changes up to 100. The
success rate converges to 83% while reaching the final plateau
after 40 changes.

Figure 10b depicts the hardware overhead in the number of
LUTs, FFs, and LUT-RAM being used for a varying number of
replaced parameters. The more parameters we replace, the more
memory lines must be kept in the trojan ROM. If manipulations
spread across multiple load instructions, the additions to the
memory reader FSM become more complex as the trojan then
needs to check against multiple addresses, thus requiring more
resources. To cater for potential model updates and allow for
larger backdoors, sufficient ROM should be provisioned during
trojan insertion. Here, our trojan implementation causes a total
hardware overhead below 1% and fits the target device. In the
absence of a golden model, this results in a stealthy trojan
implementation as no unreasonable amount of resources is
required to mount the manipulation. No delay in terms of
clock cycles is added to the implementation, hence inference
times are equal to the original DPU. Based on these results,
we argue that 30 weight changes resulting in a success rate of
78.15% are a good trade-off to cause significant harm at little
overhead.

V. DISCUSSION

In this section, we discuss the implications and counter-
measures of the presented attack from both the hardware and
machine learning perspectives.

A. Implications

Hardware Acceleration. By realizing a backdoor that
is added to a learning model strictly within the hardware,
we bypass all software and model integrity checks aimed
at ensuring valid predictions. Our work thus demonstrates
that the hardware used for machine-learning acceleration
cannot be blindly trusted and must undergo the same scrutiny
as the software and learning model to ensure correct and
trustworthy operation. In safety-critical scenarios, the use of
closed-source third-party accelerators for machine learning
must be questioned, as they pose a potential security risk.

ASIC vs. FPGA Deployment. Our case study targets an
FPGA accelerator. Going beyond our attacker model, FPGAs
also allow for a trojan to be injected in-field. Given access to
the bitstream, an adversary could manipulate the hardware
implementation even after deployment. Although altering
bitstreams is tedious, it is well-understood [20, 40, 63, 67]
and certainly viable for powerful adversaries. While bitstream
protection schemes exist, they are difficult to implement and
apply correctly [18, 19, 57, 58, 59, 84, 85].

We target an FPGA due to its accessibility for academic
research. However, our trojan attack carries easily over to

ASICs. For example, Google’s TPU [37] features an archi-
tecture similar to the Xilinx DPU, which enables the same
attack to be applied to their architecture. Consequently, circuitry
for swapping selected weights, as described in Section IV-B,
could be added to many ASIC accelerators. Still, in order
to be universally usable, programmability with respect to the
backdoor parameters is strictly required.

B. Detectability & Countermeasures

Detectability. The trojan is implanted during design or
manufacturing, and our hardware manipulation overhead is
minimal. Hence, as discussed in Section I, the only viable
option for trojan detection is to analyze the circuit itself
for malicious functionality. For FPGAs, this requires tedious
reverse engineering of the bitstream format and, crucially,
interpretation of whether there are any malicious functions
hidden within an unknown architecture. For ASICs, one needs
to image the chip layer by layer using a scanning electron
microscope (SEM) and extract a netlist using computer vision,
a task that requires highly specialized equipment, skills, and
considerable monetary resources. Even after successful netlist
recovery, one again faces the problem of detecting a trojan
within an unknown circuit. We claim that such efforts are
out of reach in practice. Although nation-states dispose of the
resources to conduct such investigations, the required effort
does not scale with the number of samples to be tested.

Hardware Countermeasures. Two antagonistic approaches
could be followed to harden a hardware design against
manipulations. Cryptographic and obfuscation measures can
hamper manipulating the hardware description language (HDL)
design. This demands a trusted design process, requiring strict
access restrictions for the design files, vetting of all involved
employees, and verification of design tools. Furthermore, this
chain of trust must be extended to all third-party IP cores.
Another strategy is switching to an open-source approach
and ensuring public access to all design sources, allowing
for independent verification. Although both strategies can help
mitigate tampering along the supply chain, a trojan can still be
inserted during the manufacturing, for example, by replacing
the trusted netlist with a trojanized clone. Consequently, using
hardware accelerators for security-critical machine-learning
applications demands a trusted production facility.

Machine Learning Countermeasures. Current approaches
for detecting machine-learning backdoors [92, 99] fail because
our attack operates within the hardware accelerator and the
outside model remains unchanged. Detecting the backdoor
during execution [12, 25, 90], e.g., by monitoring neuron
activations, may help, but incurs significant overhead and
counteracts the purpose of hardware acceleration. The decrease
in accuracy induced by our backdoor is similar to that of
quantization, so the attack cannot be detected from the model’s
accuracy either. To detect the malicious behavior, one needs
to compare many outputs of the hardware-accelerated model
to the original quantized version running in software. While
this strategy allows for identifying prediction discrepancies,

the backdoor and its trigger remain unknown. Currently, we
lack appropriate methods to identify backdoors with this hybrid
form of hardware-software testing. Finally, to prevent our trojan
from activating, one could permute the parameters streamed
to the hardware accelerator. This renders our attack incapable
of identifying the correct insertion point for the manipulated
parameters during opeation.However, this approach is not
capable of detecting the trojan in the accelerator.

VI. CONCLUSION

Our work extends the lively front of adversarial machine
learning to a new component: hardware acceleration. We
investigate the threat of hardware trojans for machine learning
and present a programmable trojan framework that backdoors a
learning model in hardware during inference. All manipulations
remain within the hardware and no model changes can be
observed, defeating existing defenses. To realize the trojan, we
expand on the concept of minimal backdoors that require very
few parameter changes to implant malicious functionality. We
demonstrate the applicability of our attack by implanting a
trojan in an off-the-shelf accelerator from Xilinx.

Despite making strong assumptions on the attacker’s capa-
bilities, we expect the required sophistication to be in reach
for well-organized adversaries. Such supply chain attacks have
been a serious concern for many years [17], resulting in major
investments by governments around the world [24, 75]. Hence,
out trojan attack illustrates that hardware should not be blindly
trusted and the integrity of machine-learning accelerators needs
to be carefully protected and verified, similar to other security-
critical components. We urge manufacturers, IP vendors, and
system integrators alike to pay close attention to these threats,
and call on the research community to develop countermeasures
to defend against this class of attacks.

ACKNOWLEDGEMENTS

We gratefully acknowledge funding by Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2092 CASA – 390781972
and the European Research Council (ERC) under the consol-
idator grant MALFOY (101043410).

REFERENCES

[1] Advanced Micro Devices, Inc. Vitis AI. Available at
https://www.xilinx.com/products/design- tools/vitis/
vitis-ai.html. 2023. (Visited on 01/18/2023).

[2] Advanced Micro Devices, Inc. Vitis AI DPU. Available
at https://github.com/Xilinx/Vitis-AI/tree/master/dpu.
2023. (Visited on 02/05/2023).

[3] Md. Mahbub Alam, Shahin Tajik, Fatemeh Ganji,
Mark M. Tehranipoor, and Domenic Forte. “RAM-
Jam: Remote Temperature and Voltage Fault Attack on
FPGAs using Memory Collisions”. In: 2019 Workshop
on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2019, Atlanta, GA, USA, August 24, 2019. IEEE,
2019, pp. 48–55.

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/dpu

[4] Peter Asaro. “On banning autonomous weapon systems:
human rights, automation, and the dehumanization of
lethal decision-making”. In: International Review of
the Red Cross 94.886 (2012), pp. 687–709.

[5] Jiawang Bai et al. “Targeted Attack against Deep Neural
Networks via Flipping Limited Weight Bits”. In: 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[6] Georg T. Becker, Francesco Regazzoni, Christof Paar,
and Wayne P. Burleson. “Stealthy Dopant-Level Hard-
ware Trojans”. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2013 - 15th International
Workshop, Santa Barbara, CA, USA, August 20-23,
2013. Proceedings. Vol. 8086. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 197–214.

[7] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley,
Xuan Thuy Ngo, and Laurent Sauvage. “Hardware
Trojan Horses in Cryptographic IP Cores”. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, Los Alamitos, CA, USA, August 20, 2013.
IEEE Computer Society, 2013, pp. 15–29.

[8] Shivam Bhasin and Francesco Regazzoni. “A survey
on hardware trojan detection techniques”. In: 2015
IEEE International Symposium on Circuits and Systems,
ISCAS 2015, Lisbon, Portugal, May 24-27, 2015. IEEE,
2015, pp. 2021–2024.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov.
“Poisoning Attacks against Support Vector Machines”.
In: Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland,
UK, June 26 - July 1, 2012. icml.cc / Omnipress, 2012.

[10] Jakub Breier et al. “Practical Fault Attack on Deep
Neural Networks”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. ACM, 2018, pp. 2204–2206.

[11] Nicholas Carlini and David A. Wagner. “Towards
Evaluating the Robustness of Neural Networks”. In:
2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017. IEEE
Computer Society, 2017, pp. 39–57.

[12] Bryant Chen et al. “Detecting Backdoor Attacks on
Deep Neural Networks by Activation Clustering”.
In: Workshop on Artificial Intelligence Safety 2019
co-located with the Thirty-Third AAAI Conference
on Artificial Intelligence 2019 (AAAI-19), Honolulu,
Hawaii, January 27, 2019. Vol. 2301. CEUR Workshop
Proceedings. CEUR-WS.org, 2019.

[13] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. “DeepInspect: A Black-box Trojan De-
tection and Mitigation Framework for Deep Neural
Networks”. In: Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019. ij-
cai.org, 2019, pp. 4658–4664.

[14] Animesh Chhotaray, Adib Nahiyan, Thomas Shrimpton,
Domenic Forte, and Mark M. Tehranipoor. “Standard-
izing Bad Cryptographic Practice: A Teardown of
the IEEE Standard for Protecting Electronic-design
Intellectual Property”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017. ACM, 2017, pp. 1533–1546.

[15] Joseph Clements and Yingjie Lao. “Hardware
Trojan Attacks on Neural Networks”. In: CoRR
abs/1806.05768 (2018). arXiv: 1806.05768.

[16] Eleanor Clifford, Ilia Shumailov, Yiren Zhao, Ross J.
Anderson, and Robert D. Mullins. “ImpNet: Impercep-
tible and blackbox-undetectable backdoors in compiled
neural networks”. In: IEEE Conference on Secure
and Trustworthy Machine Learning, SaTML 2024,
Toronto, ON, Canada, April 9-11, 2024. IEEE, 2024,
pp. 344–357.

[17] Defense Science Board Task Force. “High Performance
Microchip Supply”. In: Annual Report. Defense Tech-
nical Information Center (DTIC), USA (2005).

[18] Maik Ender, Gregor Leander, Amir Moradi, and
Christof Paar. “A Cautionary Note on Protecting Xilinx’
UltraScale(+) Bitstream Encryption and Authentication
Engine”. In: 30th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing
Machines, FCCM 2022, New York City, NY, USA, May
15-18, 2022. IEEE, 2022, pp. 1–9.

[19] Maik Ender, Amir Moradi, and Christof Paar. “The
Unpatchable Silicon: A Full Break of the Bitstream En-
cryption of Xilinx 7-Series FPGAs”. In: 29th USENIX
Security Symposium, USENIX Security 2020, August 12-
14, 2020. USENIX Association, 2020, pp. 1803–1819.

[20] Maik Ender et al. “Insights into the mind of a trojan
designer: the challenge to integrate a trojan into the
bitstream”. In: Proceedings of the 24th Asia and
South Pacific Design Automation Conference, ASPDAC
2019, Tokyo, Japan, January 21-24, 2019. ACM, 2019,
pp. 112–119.

[21] Dumitru Erhan, Y. Bengio, Aaron Courville, and Pascal
Vincent. “Visualizing Higher-Layer Features of a Deep
Network”. In: Technical Report, Univeristé de Montréal
(2009).

[22] Arturo de la Escalera andchat Jose M. Armingol and
Mario Mata. “Traffic sign recognition and analysis
for intelligent vehicles”. In: Image Vis. Comput. 21.3
(2003), pp. 247–258.

[23] Andre Esteva et al. “Dermatologist-level classification
of skin cancer with deep neural networks”. In: Nature
542.7639 (2017), pp. 115–118.

[24] European Comission. European Chips Act. Brussels,
May 2022.

[25] Yansong Gao et al. “STRIP: a defence against trojan
attacks on deep neural networks”. In: Proceedings of
the 35th Annual Computer Security Applications Con-

https://arxiv.org/abs/1806.05768

ference, ACSAC 2019, San Juan, PR, USA, December
09-13, 2019. ACM, 2019, pp. 113–125.

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. “Explaining and Harnessing Adversarial Ex-
amples”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. 2015.

[27] Daniel Gruss et al. “Another Flip in the Wall of
Rowhammer Defenses”. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA. IEEE
Computer Society, 2018, pp. 245–261.

[28] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and
Siddharth Garg. “BadNets: Evaluating Backdooring
Attacks on Deep Neural Networks”. In: IEEE Access
7 (2019), pp. 47230–47244.

[29] Xiaolong Guo, Raj Gautam Dutta, Yier Jin, Farimah
Farahmandi, and Prabhat Mishra. “Pre-silicon security
verification and validation: a formal perspective”. In:
Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015.
ACM, 2015, 145:1–145:6.

[30] Song Han, Huizi Mao, and William J. Dally. “Deep
Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding”.
In: 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings. 2016.

[31] Kim M. Hazelwood et al. “Applied Machine Learning
at Facebook: A Datacenter Infrastructure Perspective”.
In: IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA 2018, Vienna,
Austria, February 24-28, 2018. IEEE Computer Society,
2018, pp. 620–629.

[32] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cris-
tiano Giuffrida, and Tudor Dumitras. “Terminal Brain
Damage: Exposing the Graceless Degradation in Deep
Neural Networks Under Hardware Fault Attacks”. In:
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019.
USENIX Association, 2019, pp. 497–514.

[33] Sebastian Houben, Johannes Stallkamp, Jan Salmen,
Marc Schlipsing, and Christian Igel. “Detection of
traffic signs in real-world images: The German traffic
sign detection benchmark”. In: The 2013 International
Joint Conference on Neural Networks, IJCNN 2013,
Dallas, TX, USA, August 4-9, 2013. IEEE, 2013, pp. 1–
8.

[34] Xing Hu et al. “Practical Attacks on Deep Neural
Networks by Memory Trojaning”. In: IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 40.6 (2021),
pp. 1230–1243.

[35] IEEE Design Automation Standards Committee
(DASC). IEEE 1735-2014 - Recommended Practice
for Encryption and Management of Electronic Design
Intellectual Property (IP). IEEE, 2015.

[36] Benoit Jacob et al. “Quantization and Training of
Neural Networks for Efficient Integer-Arithmetic-Only
Inference”. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. Computer
Vision Foundation / IEEE Computer Society, 2018,
pp. 2704–2713.

[37] Norman P. Jouppi et al. “In-Datacenter Performance
Analysis of a Tensor Processing Unit”. In: Proceedings
of the 44th Annual International Symposium on Com-
puter Architecture, ISCA 2017, Toronto, ON, Canada,
June 24-28, 2017. ACM, 2017, pp. 1–12.

[38] John Jumper et al. “Highly accurate protein struc-
ture prediction with AlphaFold”. In: Nature 596.7873
(2021), pp. 583–589.

[39] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld,
and Mohammad Tehranipoor. “Trustworthy Hardware:
Identifying and Classifying Hardware Trojans”. In:
Computer 43.10 (2010), pp. 39–46.

[40] Jatin Kataria, Rick Housley, Joseph Pantoga, and Ang
Cui. “Defeating Cisco Trust Anchor: A Case-Study
of Recent Advancements in Direct FPGA Bitstream
Manipulation”. In: 13th USENIX Workshop on Offen-
sive Technologies, WOOT 2019, Santa Clara, CA, USA,
August 12-13, 2019. USENIX Association, 2019.

[41] Yoongu Kim et al. “Flipping bits in memory without
accessing them: An experimental study of DRAM
disturbance errors”. In: ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014. IEEE
Computer Society, 2014, pp. 361–372.

[42] Vivek Kothari, Edgar Liberis, and Nicholas D. Lane.
“The Final Frontier: Deep Learning in Space”. In:
HotMobile ’20: The 21st International Workshop on
Mobile Computing Systems and Applications, Austin,
TX, USA, March 3-4, 2020. ACM, 2020, pp. 45–49.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. “ImageNet Classification with Deep Convolutional
Neural Networks”. In: Advances in Neural Information
Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States. 2012, pp. 1106–1114.

[44] Yann LeCun, John S. Denker, and Sara A. Solla.
“Optimal Brain Damage”. In: Advances in Neural
Information Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989]. Mor-
gan Kaufmann, 1989, pp. 598–605.

[45] He Li, Qiang Liu, and Jiliang Zhang. “A survey of
hardware Trojan threat and defense”. In: Integr. 55
(2016), pp. 426–437.

[46] Wenshuo Li et al. “Hu-Fu: Hardware and Software
Collaborative Attack Framework Against Neural Net-
works”. In: 2018 IEEE Computer Society Annual Sym-
posium on VLSI, ISVLSI 2018, Hong Kong, China, July

8-11, 2018. IEEE Computer Society, 2018, pp. 482–
487.

[47] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen,
and Yunxin Liu. “DeepPayload: Black-box Backdoor
Attack on Deep Learning Models through Neural Pay-
load Injection”. In: 43rd IEEE/ACM International Con-
ference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 2021, pp. 263–274.

[48] Qi Liu, Jieming Yin, Wujie Wen, Chengmo Yang,
and Shi Sha. “NeuroPots: Realtime Proactive Defense
against Bit-Flip Attacks in Neural Networks”. In:
32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023, pp. 6347–6364.

[49] Wenye Liu, Chip-Hong Chang, Fan Zhang, and Xi-
aoxuan Lou. “Imperceptible Misclassification Attack
on Deep Learning Accelerator by Glitch Injection”.
In: 57th ACM/IEEE Design Automation Conference,
DAC 2020, San Francisco, CA, USA, July 20-24, 2020.
IEEE, 2020, pp. 1–6.

[50] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang
Xu. “Fault injection attack on deep neural network”.
In: 2017 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2017, Irvine, CA, USA,
November 13-16, 2017. IEEE, 2017, pp. 131–138.

[51] Yingqi Liu et al. “Trojaning Attack on Neural Net-
works”. In: 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet
Society, 2018.

[52] Christos Louizos, Karen Ullrich, and Max Welling.
“Bayesian Compression for Deep Learning”. In: Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA. 2017, pp. 3288–3298.

[53] Christos Louizos, Max Welling, and Diederik P.
Kingma. “Learning Sparse Neural Networks through
L 0 Regularization”. In: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[54] Eric Love, Yier Jin, and Yiorgos Makris. “Proof-
Carrying Hardware Intellectual Property: A Pathway
to Trusted Module Acquisition”. In: IEEE Trans. Inf.
Forensics Secur. 7.1 (2012), pp. 25–40.

[55] Hua Ma et al. “Quantization Backdoors to Deep
Learning Commercial Frameworks”. In: IEEE Trans.
Dependable Secur. Comput. 21.3 (2024), pp. 1155–
1172.

[56] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P.
Vetrov. “Variational Dropout Sparsifies Deep Neural
Networks”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017. Vol. 70. Proceedings

of Machine Learning Research. PMLR, 2017, pp. 2498–
2507.

[57] Amir Moradi, Alessandro Barenghi, Timo Kasper, and
Christof Paar. “On the vulnerability of FPGA bitstream
encryption against power analysis attacks: extracting
keys from xilinx Virtex-II FPGAs”. In: Proceedings of
the 18th ACM Conference on Computer and Commu-
nications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011. ACM, 2011, pp. 111–124.

[58] Amir Moradi, Markus Kasper, and Christof Paar.
“Black-Box Side-Channel Attacks Highlight the Im-
portance of Countermeasures - An Analysis of the
Xilinx Virtex-4 and Virtex-5 Bitstream Encryption
Mechanism”. In: Topics in Cryptology - CT-RSA 2012 -
The Cryptographers’ Track at the RSA Conference 2012,
San Francisco, CA, USA, February 27 - March 2, 2012.
Proceedings. Vol. 7178. Lecture Notes in Computer
Science. Springer, 2012, pp. 1–18.

[59] Amir Moradi and Tobias Schneider. “Improved Side-
Channel Analysis Attacks on Xilinx Bitstream En-
cryption of 5, 6, and 7 Series”. In: Constructive Side-
Channel Analysis and Secure Design - 7th International
Workshop, COSADE 2016, Graz, Austria, April 14-
15, 2016, Revised Selected Papers. Vol. 9689. Lecture
Notes in Computer Science. Springer, 2016, pp. 71–87.

[60] Rijoy Mukherjee and Rajat Subhra Chakraborty. “Novel
Hardware Trojan Attack on Activation Parameters of
FPGA-Based DNN Accelerators”. In: IEEE Embed.
Syst. Lett. 14.3 (2022), pp. 131–134.

[61] Adib Nahiyan et al. “Hardware trojan detection through
information flow security verification”. In: IEEE Inter-
national Test Conference, ITC 2017, Fort Worth, TX,
USA, October 31 - Nov. 2, 2017. IEEE, 2017, pp. 1–10.

[62] Tuan Anh Nguyen and Anh Tuan Tran. “Input-Aware
Dynamic Backdoor Attack”. In: Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. 2020.

[63] Jean-Baptiste Note and Éric Rannaud. “From the
bitstream to the netlist”. In: Proceedings of the
ACM/SIGDA 16th International Symposium on Field
Programmable Gate Arrays, FPGA 2008, Monterey,
California, USA, February 24-26, 2008. ACM, 2008,
p. 264.

[64] Tolulope A. Odetola, Hawzhin Raoof Mohammed, and
Syed Rafay Hasan. “A Stealthy Hardware Trojan Ex-
ploiting the Architectural Vulnerability of Deep Learn-
ing Architectures: Input Interception Attack (IIA)”. In:
CoRR abs/1911.00783 (2019). arXiv: 1911.00783.

[65] Nicolas Papernot, Patrick D. McDaniel, Arunesh Sinha,
and Michael P. Wellman. “SoK: Security and Pri-
vacy in Machine Learning”. In: 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018. IEEE,
2018, pp. 399–414.

https://arxiv.org/abs/1911.00783

[66] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisser-
man. “Deep Face Recognition”. In: Proceedings of the
British Machine Vision Conference 2015, BMVC 2015,
Swansea, UK, September 7-10, 2015. BMVA Press,
2015, pp. 41.1–41.12.

[67] Khoa Dang Pham, Edson L. Horta, and Dirk Koch.
“BITMAN: A tool and API for FPGA bitstream
manipulations”. In: Design, Automation & Test in
Europe Conference & Exhibition, DATE 2017, Lau-
sanne, Switzerland, March 27-31, 2017. IEEE, 2017,
pp. 894–897.

[68] Endres Puschner et al. “Red Team vs. Blue Team: A
Real-World Hardware Trojan Detection Case Study
Across Four Modern CMOS Technology Generations”.
In: 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023.
IEEE, 2023, pp. 56–74.

[69] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. “Bit-
Flip Attack: Crushing Neural Network With Progressive
Bit Search”. In: 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019. IEEE, 2019,
pp. 1211–1220.

[70] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. “TBT:
Targeted Neural Network Attack With Bit Trojan”. In:
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020. Computer Vision Foundation / IEEE,
2020, pp. 13195–13204.

[71] Michael Rathmair, Florian Schupfer, and Christian
Krieg. “Applied formal methods for hardware Trojan
detection”. In: IEEE International Symposium on Cir-
cuits and Systemss, ISCAS 2014, Melbourne, Victoria,
Australia, June 1-5, 2014. IEEE, 2014, pp. 169–172.

[72] Albert Reuther et al. “Survey and Benchmarking of
Machine Learning Accelerators”. In: 2019 IEEE High
Performance Extreme Computing Conference, HPEC
2019, Waltham, MA, USA, September 24-26, 2019.
IEEE, 2019, pp. 1–9.

[73] Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. “Hidden Trigger Backdoor Attacks”.
In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 2020,
pp. 11957–11965.

[74] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. “Dynamic Backdoor Attacks Against
Machine Learning Models”. In: 7th IEEE European
Symposium on Security and Privacy, EuroS&P 2022,
Genoa, Italy, June 6-10, 2022. IEEE, 2022, pp. 703–
718.

[75] Senate of the United States. CHIPS and Science Act
2022 (P.L. 117-167). Washington, D.C., July 2022.

[76] Ali Shafahi et al. “Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks”. In: Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. 2018, pp. 6106–6116.

[77] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. “Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps”. In:
2nd International Conference on Learning Represen-
tations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Workshop Track Proceedings. 2014.

[78] Karen Simonyan and Andrew Zisserman. “Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. 2015.

[79] Sergei Skorobogatov and Christopher Woods. “Break-
through Silicon Scanning Discovers Backdoor in Mil-
itary Chip”. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. Vol. 7428. Lecture Notes in Computer
Science. Springer, 2012, pp. 23–40.

[80] Julian Speith et al. “How Not to Protect Your IP - An
Industry-Wide Break of IEEE 1735 Implementations”.
In: 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022.
IEEE, 2022, pp. 1656–1671.

[81] Suraj Srinivas, Akshayvarun Subramanya, and
R. Venkatesh Babu. “Training Sparse Neural
Networks”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR
Workshops 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, pp. 455–462.

[82] Cynthia Sturton, Matthew Hicks, David A. Wagner, and
Samuel T. King. “Defeating UCI: Building Stealthy
and Malicious Hardware”. In: 32nd IEEE Symposium
on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA. IEEE Computer Society,
2011, pp. 64–77.

[83] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan
Mislove. “Mind Your Weight(s): A Large-scale Study
on Insufficient Machine Learning Model Protection in
Mobile Apps”. In: 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021. USENIX
Association, 2021, pp. 1955–1972.

[84] Pawel Swierczynski, Amir Moradi, David F. Oswald,
and Christof Paar. “Physical Security Evaluation of the
Bitstream Encryption Mechanism of Altera Stratix II
and Stratix III FPGAs”. In: ACM Trans. Reconfigurable
Technol. Syst. 7.4 (2015), 34:1–34:23.

[85] Shahin Tajik, Heiko Lohrke, Jean-Pierre Seifert, and
Christian Boit. “On the Power of Optical Contactless
Probing: Attacking Bitstream Encryption of FPGAs”.
In: Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017.
ACM, 2017, pp. 1661–1674.

[86] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. “Demon in the Variant: Statistical Analysis of
DNNs for Robust Backdoor Contamination Detection”.
In: 30th USENIX Security Symposium, USENIX Secu-
rity 2021, August 11-13, 2021. USENIX Association,
2021, pp. 1541–1558.

[87] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang,
and Xia Hu. “An Embarrassingly Simple Approach
for Trojan Attack in Deep Neural Networks”. In: KDD

’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020. ACM, 2020, pp. 218–228.

[88] Mohammad Tehranipoor and Farinaz Koushanfar. “A
Survey of Hardware Trojan Taxonomy and Detection”.
In: IEEE Des. Test Comput. 27.1 (2010), pp. 10–25.

[89] M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk
Sunar, and Ziming Zhang. “Don’t Knock! Rowhammer
at the Backdoor of DNN Models”. In: 53rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Network, DSN 2023, Porto, Portugal, June
27-30, 2023. IEEE, 2023, pp. 109–122.

[90] Brandon Tran, Jerry Li, and Aleksander Madry. “Spec-
tral Signatures in Backdoor Attacks”. In: Advances
in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. 2018, pp. 8011–8021.

[91] Karen Ullrich, Edward Meeds, and Max Welling. “Soft
Weight-Sharing for Neural Network Compression”. In:
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[92] Bolun Wang et al. “Neural Cleanse: Identifying and
Mitigating Backdoor Attacks in Neural Networks”. In:
2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019. IEEE,
2019, pp. 707–723.

[93] Chao Wang et al. “DLAU: A Scalable Deep Learning
Accelerator Unit on FPGA”. In: IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 36.3 (2017), pp. 513–
517.

[94] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. “HAQ: Hardware-Aware Automated Quantiza-
tion With Mixed Precision”. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer
Vision Foundation / IEEE, 2019, pp. 8612–8620.

[95] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. “Learning Structured Sparsity in Deep
Neural Networks”. In: Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. 2016, pp. 2074–2082.

[96] Carole-Jean Wu et al. “Machine Learning at Facebook:
Understanding Inference at the Edge”. In: 25th IEEE
International Symposium on High Performance Com-
puter Architecture, HPCA 2019, Washington, DC, USA,
February 16-20, 2019. IEEE, 2019, pp. 331–344.

[97] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev,
and Paulius Micikevicius. “Integer Quantization for
Deep Learning Inference: Principles and Empirical
Evaluation”. In: CoRR abs/2004.09602 (2020). arXiv:
2004.09602.

[98] Kan Xiao et al. “Hardware Trojans: Lessons Learned
after One Decade of Research”. In: ACM Trans. Design
Autom. Electr. Syst. 22.1 (2016), 6:1–6:23.

[99] Xiaojun Xu et al. “Detecting AI Trojans Using Meta
Neural Analysis”. In: 42nd IEEE Symposium on Secu-
rity and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. IEEE, 2021, pp. 103–120.

[100] Mingfu Xue, Chongyan Gu, Weiqiang Liu, Shichao Yu,
and Máire O’Neill. “Ten years of hardware Trojans: a
survey from the attacker’s perspective”. In: IET Comput.
Digit. Tech. 14.6 (2020), pp. 231–246.

[101] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. “Deep-
Hammer: Depleting the Intelligence of Deep Neural
Networks through Targeted Chain of Bit Flips”. In:
29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020. USENIX Association, 2020,
pp. 1463–1480.

[102] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben
Y. Zhao. “Latent Backdoor Attacks on Deep Neural
Networks”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. ACM,
2019, pp. 2041–2055.

[103] Jing Ye, Yu Hu, and Xiaowei Li. “Hardware Trojan in
FPGA CNN Accelerator”. In: 27th IEEE Asian Test
Symposium, ATS 2018, Hefei, China, October 15-18,
2018. IEEE, 2018, pp. 68–73.

[104] Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini,
Sencun Zhu, and David J. Miller. “Backdoor Embed-
ding in Convolutional Neural Network Models via
Invisible Perturbation”. In: CODASPY ’20: Tenth ACM
Conference on Data and Application Security and
Privacy, New Orleans, LA, USA, March 16-18, 2020.
ACM, 2020, pp. 97–108.

[105] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-
Man Cheung, and Pascal Frossard. “Adaptive Quan-
tization for Deep Neural Network”. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018. AAAI Press, 2018, pp. 4596–4604.

https://arxiv.org/abs/2004.09602

	Introduction
	Related Work and Open Challenges
	Contributions

	Backdoor Attack Overview
	Attacker Model
	Attack Outline

	Minimal Backdoors
	From Learning to Backdoors
	Evaluation

	Case Study with the Xilinx Vitis AI
	DPU Architecture
	Trojanizing the DPU
	Evaluation

	Discussion
	Implications
	Detectability & Countermeasures

	Conclusion

