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Abstract—Recent research has developed a series of methods
for finding vulnerabilities in software using machine learning.
While the proposed methods provide a remarkable perfor-
mance in controlled experiments, their practical application is
hampered by their black-box nature: A security practitioner
cannot tell how these methods arrive at a decision and
what code structures contribute to a reported security flaw.
Explanation methods for machine learning may overcome this
problem and guide the practitioner to relevant code. However,
there exist a variety of competing explanation methods, each
highlighting different code regions when given the same
finding. So far, this inconsistency has made it impossible to
select a suitable explanation method for practical use.

In this paper, we address this problem and develop
a method for analyzing and comparing explanations for
learning-based vulnerability discovery. Given a predicted
vulnerability, our approach uses directed fuzzing to create
local ground-truth around code regions marked as relevant
by an explanation method. This local ground-truth enables
us to assess the veracity of the explanation. As a result, we
can qualitatively compare different explanation methods and
determine the most accurate one for a particular learning
setup. In an empirical evaluation with different discovery
and explanation methods, we demonstrate the utility of
this approach and its capabilities in making learning-based
vulnerability discovery more transparent.

1. Introduction

The automatic discovery of vulnerabilities in software
is a long-standing challenge in security research. Several
methods have been proposed for this task that combine
static program analysis with machine learning techniques.
Recent approaches build on deep neural networks that
are trained on examples of vulnerable and non-vulnerable
code and potentially identify security defects automatically.
In controlled experiments, several of these learning-based
methods reach a remarkable performance and outperform
conventional techniques of static program analysis for
vulnerability discovery [e.g., 13, 16, 33, 49, 56].

Methods for learning-based vulnerability discovery,
however, suffer from a severe shortcoming: The employed
deep neural networks are opaque to the practitioner. That
is, it remains unclear how they arrive at a decision and
which particular code structures are responsible for a
predicted vulnerability. To make use of learning-based
methods, a practitioner is forced to manually investigate
each finding and validate its integrity, undermining the

promise of automatic vulnerability discovery. Despite their
excellent performance, learning-based methods are thus
rarely employed in practice.

As a remedy, recent work has explored explanation
methods for machine learning in vulnerability discovery
[e.g., 21, 50, 58]. These methods enable to trace back the
decisions of a neural network to particular code regions,
thus creating the necessary context to assess a predicted
vulnerability. However, there is no established standard
for these explanations. A variety of competing concepts
exists, each highlighting different code regions when given
the same finding [21, 50]. As an example, Figure 1 shows
three explanations for a security flaw identified by a deep
neural network [13]. Each explanation marks different parts
of the code, making it impossible to interpret the finding
without further insights. This inconsistency poses a major
hurdle in creating transparent and explainable methods for
vulnerability discovery.

In this work, we address this problem and propose a
method for analyzing and comparing explanation methods
for learning-based vulnerability discovery. The core idea of
our approach is to generate ground-truth around the code
regions marked by an explanation method to determine
their veracity. To this end, we guide a directed fuzzer
toward their locations and inspect the relation between
reported crashes and explanations. This strategy allows us
to make a qualitative comparison of explanation methods
and link marked code regions to actual vulnerabilities. Our
method provides a novel view of explainable machine
learning in security that addresses the lack of ground-truth
in current frameworks for analyzing explanations.

We empirically evaluate our approach using different
explanation methods suitable for vulnerability discovery.
Our experiments show that commonly used intrinsic crite-
ria, such as the descriptive accuracy of an explanation, do
not adequately measure performance and lead to inconsis-
tent results. In contrast, our approach allows for a reliable
comparison, as it selectively constructs ground-truth on
local code regions, defined as local ground-truth and thus
evaluates the explanations against real vulnerabilities. Our
analysis contradicts prior work on selecting explanation
methods for vulnerability discovery[21, 50]: We find that
graph-based explanation methods actually outperform other
techniques when we base this comparison on local ground-
truth rather than (arbitrary) intrinsic criteria.

Naturally, our method cannot uncover the ground-truth
for any possible vulnerability, as it inherits the limitations
of directed fuzzing. For example, explanations pointing to
unreachable code cannot be analyzed and verified. Still,



1 int xmlStrlen(const xmlChar *str) {
2 int len = 0;
3 if (str == NULL) return(0);
4 while ( *str != 0) {
5 str++;
6 len++;
7 }
8 return(len);
9 }

10
11 xmlChar *xmlStrncat(xmlChar *cur, const xmlChar *add, int len) {
12 int size;
13 xmlChar *ret;
14 if ((add == NULL) || (len == 0))
15 return(cur);
16
17 if (len < 0)
18 return(NULL);
19
20 if (cur == NULL)
21 return(xmlStrndup(add, len));
22
23 size = xmlStrlen(cur);
24 + if (size < 0)
25 + return(NULL);
26 ret = (xmlChar * )xmlRealloc(cur, (size+len+1) * sizeof(xmlChar));
27 if (ret == NULL) {
28 xmlErrMemory(NULL, NULL);
29 return(cur);
30 }
31 E memcpy(&ret[size], add, len*sizeof(xmlChar));
32 ret[size + len] = 0;
33 return(ret);
34 }

Figure 1: Vulnerability CVE-2016-1834 with highlighted
explanations for ReVeal+GNNExplainer (green), Re-
Veal+Smoothgrad (blue), ReVeal+GradCam (red). E and +
denote the crash site and patch, respectively.

our method is the first approach to automatically assess
the veracity of explanations and help practitioners select
accurate explanation methods in practice.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce learning-based vulnerability discovery
and corresponding explanation methods. We then present
our approach for validating explanations in Section 3 and
evaluate its efficacy in Section 4. Limitations and related
work follow in Sections 5 and 6, respectively, before we
conclude in Section 7.

2. Vulnerability Discovery and Explanation

Let us first formalize the task of vulnerability discovery.

Definition 1. A method for static vulnerability discovery
is a decision function f : x 7→ P (vuln |x) that maps a
piece of code x to its probability of being vulnerable.

Several methods can be directly cast into this simple
representation. For example, the classic tool Flawfinder1

searches for known patterns of insecure code, including
the usage of functions associated with buffer overflows
(e.g., strcpy, strcat, gets), format string problems
(e.g. printf, snprintf), and race conditions. Flawfinder
takes the source code text representation, matches it
against the above-mentioned function names and sorts them
by risk which is a discrete approximation to P (vuln|x).
Other static code analysis tools, such as Cppcheck2 or
SonarQube3, can be similarly described as a function f
predicting vulnerabilities.

Learning-based methods for vulnerability discovery
also fit into this generic representation. The methods build
on a function f = fθ (model) parameterized by weights
θ that are obtained by training on a dataset of vulnerable

1. https://dwheeler.com/flawfinder/
2. https://cppcheck.sourceforge.io/
3. https://www.sonarqube.org/features/multi-languages/cpp/

and non-vulnerable code [22]. Compared to classic static
analysis tools, learning-based approaches do not have a
fixed rule set and thus can adapt to characteristics of
different vulnerabilities in the training data. Conceptually,
these learning-based approaches mainly differ in (a) the
program representation used as input and (b) the learning
model, that is, the way f depends on the weights θ.

2.1. Program Representation

Learning algorithms typically require vector represen-
tations as input. Some methods for vulnerability discovery,
therefore, apply techniques from natural language process-
ing (NLP) to derive a suitable feature vector for a given
source code. In this case, the statements in the code are
regarded as sentences while keywords and literals form the
words. Doing so yields a sequential data corpus that can be
numerically encoded, for instance, by applying common
word embeddings [33, 39, 42].

Source code can also be modeled as a directed graph
G = G(V,E) with vertices V , edges E ⊆ V × V ,
and attributes from a suitable feature space, that are
attached to nodes and edges [1, 7, 53]. We refer to
the resulting program representations as code graphs.
These graphs can capture syntactic and semantic relations
between statements and expressions inside code. Popular
graphs are abstract syntax trees (AST) and flow graphs
encompassing data and control flow. Similarly, a structure
called a program dependence graph (PDG) describes
control and data dependencies in a joint form [19]. Based
on these classic representations, combined graphs have
been developed for vulnerability discovery, in particular,
the code property graph (CPG) by Yamaguchi et al. that
resembles a combination of the AST, CFG and PDG [53].

2.2. Learning Model

Several learning models have been considered for
the discovery of vulnerabilities, ranging from simple
ones to deep neural networks [32, 33, 38, 42]. In par-
ticular, graph neural networks (GNN) are a promising
approach to process structured program representations.
They are deep learning models that take advantage of the
graph structure in the input and realize an embedding
i : G(V,E) 7→ y ∈ Rd that can be used for classification
tasks [43]. The most popular GNN types belong to so-
called message-passing networks (MPN) where the pre-
diction function is computed by iteratively aggregating
and updating information from neighboring nodes. Several
message passing types exist that use different aggregation
and update schemes [51].

Due to the rich semantics captured by code graphs,
GNNs have been applied in a series of works for vul-
nerability discovery [16, 49]. The resulting approaches
outperform the former introduced sequential models, like
VulDeepecker [33] and Draper [42]. In this work, we
thus focus on approaches using GNNs on code graphs.
In particular, we consider the graph-based methods De-
vign [56], ReVeal [13] and the token-based methods
VulDeeLocator [34] and LineVul [20] that are state-of-the-
art in learning-based vulnerability discovery. Nonetheless,
our approach for creating local ground-truth is applicable



to all learning models that allow tracing back explanations
to code regions.
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Figure 2: Explanation in the excerpt of a code graph.
Relevant nodes are highlighted in blue.

2.3. Explainable Learning

While learning-based vulnerability discovery has made
significant progress over the last years, a security prac-
titioner faces the problem that their decisions must be
verifiable. Learning-based approaches, however, only yield
a binary decision as output for a given source code, which
is hardly helpful for this task and requires a manual
investigation. Hence, explainable learning has been studied
as a remedy.

Given a vulnerability discovery method f we formalize
explanation methods as producing heatmaps M from pairs
of source code x and the predicted output y = f(x).
Heatmaps (or interchangeably explanations) attribute nu-
merical relevance scores to locations in the code, i.e. to
nodes and edges, if f is a GNN.

Definition 2. An explanation method (EM) is a function
ef : (x, f(x)) 7→ M where f is a vulnerability discovery
method, x a piece of code, and M a heatmap defined
over x.

EMs are commonly classified into two categories:
black-box EMs require no knowledge of the learning
model, as for instance GNNExplainer, while white-box
EMs have access to the weights of the learning model
[50]. Furthermore, we discriminate graph-specific EMs that
account for the topology of the provided graphs and graph-
agnostic EMs that do not [21]. Throughout the paper, we
apply different EMs to graph representations of code. We
assume that a list of relevant lines of code can be extracted
from the inferred heatmap M over the features. The precise
process depends on the learning model that is used. For
NLP-based approaches, as for instance VulDeeLocator and
LineVul, the embedded code slices have to be converted
back to their string representation, while for code graphs
the respective code lines have to be attached to each node.

Explanation algorithms for GNNs attribute relevance to
nodes, edges or subgraphs. We apply the heatmaps to the
nodes as depicted in Figure 2. Here we see the xmlStrlen
function from Example 1 with the corresponding graph
representation. Data and control flow edges have been

removed for visualization purposes. The relevant nodes
are highlighted in accordance with the explanation method
Smoothgrad on the ReVeal model.

2.4. Comparing Explanations

In view of the variety of available EMs, it becomes
important to select an appropriate method for a given task,
in our case vulnerability discovery. Unfortunately, ground-
truth about relevant code regions is not available, and if
there is, then only under laboratory conditions. To compare
explanation methods in practice, we require metrics that
capture the quality of the explanations delivered by an
explanation method w.r.t. to a dataset and a model. Such
a metric can be defined as a criterion function taking an
EM as input and mapping it to a numerical score.

Definition 3. A criterion is a function c : ef → R that
measures the quality of ef . An explanation method ef
outperforms êf on a particular dataset D if c(ef |D) >
c(êf |D).

A frequently used criterion is the descriptive accu-
racy (DA) that measures the relative importance of samples
comparing the prediction outcome of the model [9, 23, 35].
By removing the top features in M from x and re-
evaluating f(x̂) [50] we measure the relative drop in
performance, for instance, the accuracy. We expect the
model to arrive at a poorer decision without its relevant
features. In this case, the vulnerability discovery model is
not only used as the decision method but also as an oracle
to assess the quality of an explanation.

Definition 4. An explanation oracle is a function o : M →
[0, 1] which assesses the attributed relevance in a heatmap.

Another popular criterion measures the sparsity of
the explanation since we expect fewer relevant lines of
code to be more human-interpretable [50]. The sparsity
is calculated by simply counting the relevant code lines
from M. Furthermore, some works from the security
domain also measure the robustness of explanations, giving
intuitions about the influence of noise. Based on these
intrinsic criteria, Warnecke et al. [50] and Ganz et al. [21]
assess the suitability of explainable learning in security.

Definition 5. Suitability is the property of an explanation
that describes the potential interpretability in practical
scenarios.

We refer to criteria characterizing suitability as intrinsic
criteria since they only draw conclusions between the
learning model and the explanations—and not the task at
hand. Consequently, intrinsic criteria do not compare EMs
by their ability to explain decisions but rather by their
potential to generate interpretable explanations. Since this
is fundamentally different to interpretability, we introduce
the term suitability for intrinsic comparisons.

For example, an explanation method might be suitable
for vulnerability discovery, yet it may still be incorrect in
the sense that the highlighted code is unrelated to the identi-
fied vulnerabilities. Validating the veracity of explanations
is only possible with ground-truth, that is, extrinsic criteria
that incorporate external knowledge about vulnerable code.



The ground-truth represents another oracle, which however
is only available for trivial cases [5].

Definition 6. Veracity is the property of an explanation
that describes how the relevant lines of code of a model
actually correspond to the examined task.

When it comes to vulnerability detection, the veracity
of an explanation is arguably more important than its
suitability. The veracity is to an explanation what soundness
is to a static analyzer. A static analyzer is considered sound
if it claims that a property of a program is true, while this
property is in fact true [30]. Similarly, we expect a code
region highlighted by an explanation method to be linked
to the underlying vulnerability.

Let us consider the example shown in Figure 1 which
we use throughout the paper. It shows a vulnerability in
Libxml2 (CVE-2016-1834). The code uses xmlStrncat to
concatenate two strings together. In particular, it reallocates
the first string to a larger contiguous memory area using
the calculated lengths from xmlStrlen. If the length of the
string is too large, the variable len overflows in line 6 and
eventually results in a negative size used for reallocation.
The memory block now becomes too small for memcpy in
line 31 and yields a buffer overflow. The patch checks
whether size is negative and is denoted by + in line 24
and 25. The crash-site is indicated by E in line 31.

We highlight explanations from three EMs on this vul-
nerability to illustrate their inconsistency. GNNExplainer
has the worst results according to criteria proposed by
Ganz et al. [21], yet it comes close to the crash-site.
GradCam highlights the size assignment in line 23, which
is also a good indicator; however, line 32 is definitely a
false positive. Smoothgrad highlights lines 6 and 8 equally.
While line 6 may be relevant to the integer overflow, the
other line is a false positive as well. The problem is that
the EMs arrive at completely different explanations with
varying suitability. Thus, we wonder how can they can be
compared with respect to their veracity?

3. Methodology

We argue that the veracity of an explanation is key
for practical vulnerability discovery. However, it requires
ground-truth about the location of vulnerabilities in source
code, which is tedious to obtain or not available at all.
As a remedy, we propose to apply directed fuzzing as
an incomplete but sound strategy for generating local
ground-truth around a region highlighted by an explanation
method. An overview of the resulting method is shown in
Figure 3 and formalized in Algorithm 1. Technically, the
method is composed of four components: a learning model,
an explanation generated for a predicted vulnerability, a
directed fuzzer for comparing the veracity and a crash
analysis to provide fine-grained insights.

In the first step, the learning model receives a code
sample x as input, runs an inference process and outputs
the decision fθ(x). If a white-box explanation is employed,
the model’s weights, gradients and log-probabilities, are
additionally returned. Next, the explanation method under
test generates a heatmap M given the results of the
model for the input x. We interpret M as pointers to
interesting code regions by assigning a relative score to
each feature. A directed fuzzer [8, 14, 37] is then used as an
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Figure 3: Overview of our approach for generating local
ground-truth for explanation methods.

explanation oracle, which executes the given sample with
inputs directed toward the highlighted code regions. As the
last step, we employ a crash analysis by reproducing any
discovered crash. This enables us to obtain a detailed view
of the execution flow and, most importantly, the executed
lines of code.

The directed fuzzing and the crash analysis are repeated
for a fixed period, where the targets are processed according
to their relevance. This loop ensures that we obtain
comparative quantities for the top-k code lines highlighted
by the explanation method. We proceed to describe these
steps in more detail.

Algorithm 1: Method for generating ground-truth
for explanation methods.

Input: Discovery method f , explanation method e, dataset of
source code X

1 repeat n times
2 for x ∈ X do
3 y ← f(x) // Inference on sample
4 M← ef (x, y) // Generation of explanation
5 Highlight code lines L from M
6 Run directed fuzzer towards L
7 Reproduce and analyze crashes

8 return M1,M2,M3 (Extrinsic criteria)

Let us assume we use the highlighted line in Figure 1
from GNNExplainer to direct the fuzzer. As soon as
the fuzzer generates a seed large enough for an integer
overflow, the application crashes at line 31, since the
reserved memory block for memcpy is too small. Line 32
is obviously not on the execution trace of the crash and
the assignment in line 26 is closer to line 32 than lines
4 and 8. Hence, we argue that the fuzzer would reveal
GNNExplainer as the best EM in this example.

3.1. Prediction and Explanation

Our approach is applicable to any combination of
learning models and EMs that allow a mapping of the
predictions back to locations in the source code. For
example, it can be applied to all combinations of models
and EMs considered in the studies by Ganz et al. [21], Zou
et al. [58], and Warnecke et al. [50].

Some vulnerability discovery models come with their
own integrated EM that is optimized jointly with the
learning process, as for instance, VulDeeLocator [34] or
LineVul [20]. These explanation can be similarly used
with our method, as they are equivalent to an API wrapped
around a learning model and EM as indicated by the



dashed box in Figure 3. We refer to these methods as
model-integrated EMs.

Furthermore, some EMs generate negative and positive
scores, as they discriminate between the influences of
the two prediction classes. To unify these methods with
other explanations, we consider a code line that negatively
contributes to a vulnerability as one that indicates it is not
vulnerable. That is, we first apply the explanation method
to a decision of the learning model and then normalize
the returned relevance scores to the range M ∈ [0, 1]F ,
where F is the number of code lines in a sample. After
this normalization, we select the top k most relevant lines
of code as indicated by the relevance values. The number
k to be selected is subject to parametric choice but should
be kept small and constant since more sampled lines lead
to a more involved manual assessment.

3.2. Code Highlighting

If the considered learning model operates on a se-
quential representation of the source code, mapping the
highlighted features to code regions is straightforward. For
graph-based approaches, however, we need to design a
way to extract the relevant code locations from the graph
to be able to feed them as targets into a directed fuzzer.

To this end, we attach to each node its starting and
end lines in the source code. Some of these nodes appear
higher in the AST hierarchy, like IfStatements, whereas
others denote the leaf nodes, such as literals [21]. The
hierarchy defines the number of lines a node spans. Since
the same code line can be marked as relevant by multiple
nodes from different layers, we traverse the AST in a
depth-first search and add relevance to each line as we
walk from the root to the leaf nodes.

Ganz et al. observe that the relevance scores from
higher nodes aggregate the score of their child nodes [21],
causing higher nodes to be more relevant than lower ones.
This phenomenon can be observed in Figure 2 and is likely
due to the aggregation property from the message passing
algorithm in GNNs. We solve this issue by weighting the
relevance per node by the inverse of the number of lines
a node spans, such that, for example, the EM attributes
more relevance to an IfStatement than to its surrounding
FunctionDeclaration.

3.3. Directed Fuzzing

We employ a directed grey-box fuzzer to retrieve a set
of target locations and to aim at reaching these by seeking
inputs minimizing the distance to the locations [8]. For
instance, the directed fuzzer AFLGo calculates control-flow
and call-graph distances prior to the fuzzing process to
guide this search. Similarly, approaches to directed fuzzing,
such as Hawkeye [14], can be applied in this step to explore
the highlighted code regions and test for the presence of
vulnerabilities.

To emphasize this, we revisit the definition of a security
vulnerability.

Definition 7. A security vulnerability is a software defect
that enables an adversary to violate a security goal, such as
the confidentiality, the integrity, or the availability, through
a specifically crafted input.

A fuzzer is a program analysis tool used to generate
inputs and provoke program crashes. These crashes indicate
software defects, and since they are triggered by manipu-
lated inputs, they often represent security vulnerabilities
in the sense of Definition 7. As we direct a fuzzer towards
potential vulnerabilities in software, it is likely that a crash
is associated with a vulnerability rather than a software
defect. While this correlation could be coincidental, that
is, an independent defect is close to a vulnerability, this
situation should be rare given the high performance of
current methods for vulnerability discovery. Moreover, even
if only a defect is found, its proximity to a potential
vulnerability makes it necessary to investigate it anyway,
indicating a security relevance.

3.4. Crash Analysis

With the help of a directed fuzzer, we can thus explore
a program and seek to hit code regions indicated by an
explanation. To pinpoint the exact location of a program
crash, we utilize a debugger. The crash is a fact and thus
represents a form of ground-truth derived from a genuine
incident during the program’s execution. This incident is
local, as it pertains to individual statements rather than
the program as a whole. Consequently, we define local
ground-truth in Definition 8.

Definition 8. Local ground-truth refers to the precise
location within a program where a crash has been reported.
This location serves as a reference point for identifying
and addressing related issues in the code.

Technically, we employ a software debugger, such as
GDB or LLDB, that enables us to execute the programs
under test (PUT) with the crashing seeds and pause the
execution to collect information about the crash-site and
the explanation. In particular, we select the code lines
highlighted by the EMs as breakpoints during the crash
reproduction. When a relevant line is hit, the debugger
halts the program and starts to calculate metrics that serve
as extrinsic criteria in our approach. Using these criteria,
we are able to draw conclusions about the relation between
the crash and the highlighted code regions.

3.5. Extrinsic Criteria

We introduce three metrics that provide extrinsic
criteria to compare and assess explanation methods. These
criteria complement each other and yield a comprehensive
view of the veracity of an explanation.

M1 : Crashes per path over time. As the first criterion,
we identify the number of unique crashes and hangs that
are reported during the fuzzing processes. This enables us
to argue about which EM identified targets that lead to
more paths resulting in crashes or hangs.

Fuzzers like AFL and AFLGo report unique crashes
and unique paths by first counting the overall crashes and
paths, and then rejecting those that reach the same branches.
This process is called de-duplication. However, Klees et al.
argue that de-duplication based on the executed edges
leads to false positives [29]. Furthermore, it is insufficient
to measure only the number of crashes. An explanation
that randomly assigns relevance will result in the fuzzer



having greater test coverage, leading to more crashes, only
a few of which are actually related to the code defect. We
counteract both issues by consolidating the crashes-over-
time criterion with the found paths-over-time. Calculating
the proportion of unique crashes per path, effectively gives
us a single notion of how many crashes per path on average
have been found. More paths will decrease the score while
fewer paths increase it.

M2 : Mean breakpoint hits. As the second criterion, we
consider the average number of breakpoint hits during
the reproduction of crashes. If a target line triggers a
breakpoint during the reproduction of a crash, that line
can be considered to be associated with the vulnerability.
The more breakpoints are hit during the reproduction of
the crash, the more lines from the explanation are relevant.
The explanation method can highlight sections of code
near the actual vulnerability, but which may not be part
of the execution trace. Such lines may still be relevant,
since they may help a security practitioner to pin down
the vulnerability. On the other hand, this criterion alone
measures only whether a code line from an explanation is
executed at least once.

M3 : Mean crash distance. To overcome the gap left
by M2, we also measure the average executed statements
between the breakpoint hits and the crash-site. If the lines
from an EM are closer to the crash-site, they should be
more helpful for a security practitioner to identify and
locate the cause of the crash and hence more relevant.
Thus, the highlighted line does not have to lie exactly
on the crash-site to be helpful. A target line from which
it takes longer to reach the crash-site is accordingly less
relevant since a security practitioner would have to afford
more time to traverse the code and find the connection
between the explanation and the actual cause.

1 #include <iostream>
2 using namespace std;
3 int array[3] = {1,2,3};
4 unsigned int index = userinput();
5 if (index < 3)
6 cout << array[index];
7 else
8 cout << array[index]; // crash

Figure 4: Example vulnerability for extrinsic criteria.

Interplay of the criteria. We provide a hypothetical
example to illustrate their interplay in Figure 4 and to
establish an intuition for the three extrinsic criteria with
their edge-cases.

In this example, there are two possible branches, with
one leading to a crash if the user input index is larger
than 2. There are eight lines of code, hence each heatmap
M is specified by an 8–tuple of numbers from the interval
[0, 1] and consequently there are 8! possible orderings by
the relevance of the code lines. We want to investigate
what would be sets M+ and M− leading to the best and
worst scores, respectively.

In a fuzzing experiment, we can assume that the
fuzzer finds the crash quickest if line 7 or line 8 are
highlighted as relevant, resulting in an M1 score close to 1
for these lines. When the lines before 5 are highlighted, the
benign and the vulnerable path should appear evenly often,

resulting in an M1 score of 1/2. When only line 5 or 6 are
selected, the result is an M1 score of 0. Hence, we have
[0, 0, 0, 0, 0, 0, 1, 1] ⊆ M+ as the optimal explanation.

M2 measures the explained lines that have been exe-
cuted prior to the crash. Line 1 through line 5 are always
considered relevant by M2, since they are linear (non-
branching) starting from the program entry. In contrast,
line 5 and line 6 will never be hit in a crash and can
therefore only negatively impact the criterion. Line 7 and
line 8 are executed within the crash reproduction. Hence,
the worst score is achieved by labeling line 5 and 6, and
the best score by labeling the complement: line 1 through 4
and line 7 and 8. This leads to [1, 1, 1, 1, 0, 0, 1, 1] ⊆ M+.

M3 measures the distance between the explained lines
to the crash-site. Hence, marking line 1 would result in
the worst and line 8 in the best score. Clearly, the most
relevant line is line 8 since it has a distance of 0 to the
crash-site. For fairness, we can also take k = 2 lines prior
to the crash-site as sufficiently close, therefore we have
[0, 0, 0, 1, 0, 0, 1, 1] ⊆ M+ as the optimal explanation.

We conclude that an EM placing the most relevance on
line 7 and 8 would yield the best-combined results, since
there is the largest overlap of the different M+. While M1

already captures this property, it depends on the number of
successful fuzzing runs. When the number of repetitions is
insufficient, the heatmap becomes ambiguous and thus also
M2 and M3 are necessary to distill the local ground-truth
around the crash-site.

Relationship to intrinsic criteria. To better understand
the introduced extrinsic criteria as an incomplete yet sound
replacement for the intrinsic criteria, let us discuss their
commonalities and differences below.

The DA is the response of an intrinsic explanation
oracle, namely f , while our extrinsic criterion M1 evaluates
the response of an extrinsic explanation oracle, namely a
directed fuzzer, to measure the relevance of an explanation.
Thus, in both cases, the heatmaps are interpreted as the
localization of a weakness.

Let us consider Figure 1 as an example again: After
removing line 6 and 8, ReVeal is unable to classify the
code snippet as vulnerable. This corresponds to a benefi-
cial DA, however, it wrongly suggests that Smoothgrad
has advantageous detection capabilities. If we focus on
GNNExplainer and remove line 26, ReVeal still classifies
the snippet as vulnerable, leading to a disadvantageous
DA. This effect is due to the fact that features in x have
varying degrees of influence on the prediction output.

The intrinsic criterion sparsity counts the relevant lines
[50]. A sparser M is considered more human interpretable,
while M2 and M3 measure the distance of the executed
relevant lines to a recorded crash. For sparsity, the goal is to
minimize the highlighted code lines while for M2 and M3,
as many relevant lines as possible should be executed close
to the crash. Thus, both criteria provide intuitions about
the conciseness of the EM. Consider again Example 1,
GNNExplainer has the sparsest score but compared to
LineVul is further away from the actual crash location.
LineVul, however, has a worse sparsity score.

Some studies measure the stability [21] or robust-
ness [50] as the resiliency of an EM to noise in the feature
space. Ganz et al. measure the variance in the descriptive
accuracy [21] to this end. One EM is more robust than



another if the variance in descriptive accuracy is lower for
the former than for the latter. Intuitively, it makes sense
that the same procedure can be trivially applied to the
extrinsic criteria as well.

Local ground-truth vs. vulnerabilities. After examining
the behavior of the extrinsic criteria M1, M2, and M3 and
their relationship to intrinsic criteria, we can now consider
the benefits of using extrinsic criteria.

A program crash is a clear indicator of a software defect
and likely a vulnerability, as demonstrated by our running
example (Figure 1). For instance, in line 31, we can observe
that the program allocates insufficient memory, which
directly leads to the crash. While highlighting line 31 can
precisely pinpoint the vulnerability, other lines executed
close to the crash might provide additional insights into
the root cause of it. For instance, line 23 or 26 may
indicate an integer overflow that contributed to the crash
and could be helpful in fixing the vulnerability. On the
other hand, lines such as 32 cannot be part of the crash
execution trace, even if they are in close proximity to the
crash. Consequently, GradCam’s accuracy is lower when
considering our extrinsic criteria.

The lines of code highlighted by an EM indicate the
most relevant features for predicting a security vulnerability.
However, EMs may identify code locations with artifacts
resulting from overfitting, such as noise or outliers [50].
Conversely, a crash triggered by a fuzzer indicates the
direct consequence of a security vulnerability [37], and
the crash-site pinpoints the exact location of the problem.
Therefore, a security analyst needs to reason about the
vulnerability using the crash-site and the associated execu-
tion trace. We expect a veracious EM to highlight regions
related to the crash-site and execution trace.

Our evaluation criteria assess the accuracy and proxim-
ity of the highlighted code locations to the local ground-
truth, which is based on the actual incident where the
program behavior diverged from its intended functionality,
potentially exposing the system to security risks. This
is different from intrinsic criteria that rely solely on the
discovery model’s feedback or properties directly derived
from M, which may be unreliable.

4. Evaluation

We proceed to experimentally demonstrate the applica-
bility of our approach and evaluate the veracity of different
explanation methods. In the course of this, we provide
answers to the following research questions:

RQ1 Can we establish ground-truth around vulnerabili-
ties predicted by learning models?

RQ2 Which explanation method provides the best ex-
planations according to extrinsic criteria?

RQ3 How do extrinsic and intrinsic criteria differ when
comparing explanation methods?

RQ4 How do rule-based auditing tools perform against
explanation methods?

These questions naturally arise during software auditing
with learning-based methods for vulnerability discovery
and thus reflect typical decisions that must be made by
security practitioners.

4.1. Experimental Setup

Before addressing these questions, we first introduce
our experimental setup and the different methods for
learning-based vulnerability discovery and generating ex-
planations for their predictions.

Vulnerability discovery methods. For identifying se-
curity flaws, we employ the methods Devign [56] and
ReVeal [13], which are state-of-the-art in learning-based
vulnerability discovery.

1) Devign: This method uses code property graphs
as a basis for detecting vulnerabilities. The graphs are
extended with edges connecting leaf nodes with succeeding
statements. These edges represent the natural order of the
statements. The employed learning model is a gated graph
neural network (GGNN) with six-time steps [56].

2) ReVeal: This discovery method takes an unmodified
code property graph as input. The learning model consists
of an eight-time-step GGNN followed by a sum aggregation
and a fully connected network as the prediction head.
The training involves a triplet loss that includes binary
cross-entropy, L2 regularization, and a projection loss
that minimizes the distances between similar classes and
maximizes the difference between different classes.

Choosing two different models enables us to identify
effects that are specific to the model. Both models are
trained on 70% of the dataset while the remaining 30%
are used for testing. Devign achieves 70.33± 0.23% and
ReVeal 77.89± 0.11% accuracy on the test dataset using
five-fold cross-validation.

Furthermore, we apply two recent learning-based detec-
tion models that come with their own explanation methods
(model-integrated EMs).

3) LineVul: This model is a transformer-based discovery
model that jointly trains a self-attention [27] layer used for
line-level explanations. LineVul uses a pre-trained large
language model based on BERT and fine-tunes on patch
diffs represented as tokens [20].

4) VulDeeLocator: This model optimizes an attention
layer after a bidirectional LSTM layer and achieves gran-
ularity refinement with a top-k pooling layer by filtering
out unimportant statements [34]. VulDeeLocator uses a
token-based representation extracted from graph slices on
the LLVM intermediate representation.

We use LineVul’s official implementation4 and their
pre-trained model and retrain VulDeeLocator5 with their
official implementation on their original data. Both models
are evaluated on the same dataset as Devign and Re-
Veal achieving 68.15 ± 0.43% for VulDeeLocator and
81.11± 0.20% accuracy for LineVul using five-fold cross-
validation. LineVul and VulDeeLocator both apply jointly
optimized attention layers.

Training dataset. For our experiments, we consider a
combined training dataset assembled from the works
by Chakraborty et al. [13], Zhou et al. [56], and
Russell et al. [42]. To ensure strict separation of training
and test data, the programs under test (PUTs) are not part
of this dataset. In particular, our training dataset is derived
from the following sources:

4. https://github.com/awsm-research/LineVul/
5. https://github.com/VulDeeLocator/VulDeeLocator



1) FFmpeg+Qemu: The Devign dataset comprises
vulnerabilities extracted from commits associated with
bug fixes. These commits are taken from the FFmpeg
and Qemu open-source projects. The bugs are manually
annotated and balanced with non-vulnerable code [56].

2) Debian+Chromium: The ReVeal dataset is scraped
from patches of Chromium’s Bugzilla bug tracker and
issues from the Debian Linux security tracker. The dataset
is imbalanced and manually annotated [13].

3) Draper dataset: The Draper dataset is a partly
synthetic dataset and builds on the software assurance
reference dataset. It is partly labeled by static analyzers
and has over one million functions with around 6% of
them being vulnerable [42].

In total, our combined training dataset contains about
one million vulnerable C and C++ functions. It is likely
representative of a large set of CWEs in source code and
thus provides a good basis for training learning models
for vulnerability discovery.

Explanation methods. As subjects for our study, we
consider four common explanation methods for machine
learning. In particular, we focus on the graph-agnostic
methods Smoothgrad [46] and GradCAM [45] that are
widely applied in computer vision and the graph-specific
methods GNNExplainer [54] and PGExplainer [36] tailored
towards explaining GNNs. We chose these methods since
they yield the best performances according to other studies
focusing on software security [21, 50].

1) GradCAM: This explanation method applies a linear
approximation to the intermediate activations of GNN
layers [45]. In this work, we take the GradCAM variant
where activations of the last convolutional layer before the
readout layer are used [21].

2) SmoothGrad: This method averages the node feature
gradients on multiple noisy inputs [46]. We use noise
sampled from a normal distribution (σ = 0.15) with 50
samples following Ganz et al. [21].

3) GNNExplainer: This method employs a black-box
forward technique for GNNs. For a given graph, it tries to
maximize the mutual information (MI) of the prediction
[54]. Since the method returns edge relevance, we attribute
the relevance of each node according to the harmonic mean
of adjacent edges. We train the GNNExplainer for 100
epochs with a learning rate of 0.01.

4) PGExplainer: This method uses a so-called
explanation network on an embedding of the graph
edges [36]. We train the network for 20 epochs with a
learning rate of 0.01 using an SGD optimizer.

Since graph-agnostic methods explain only vector-
spaced features, we aggregate the feature vectors associated
with graph nodes, so that all considered methods yield node-
level explanations. Moreover, since each method returns
a heatmap with relevant scores, different thresholds will
result in different numbers of false positives and false
negatives. Compared to Ganz et al. [21] we select the ten
most relevant code lines per vulnerable function instead
of a number relative to the graph size. Generally speaking,
the number of highlighted lines should be small to avoid
extensive manual assessment.

Baselines. In addition, we compare our approach against
three simple baselines: A random baseline assigns rele-
vance to random lines in the functions known to contain
bugs. This allows us to draw conclusions about the rele-
vance of EMs. Note that this baseline has prior knowledge
about the vulnerable functions and is therefore a strong
baseline. Moreover, vanilla AFL is included to show the
general effectiveness of EM-driven target generation and
its use as an oracle. Compared to the behavior of the
EM-directed fuzzing, we expect AFL to take longer until
crash and to find more unrelated paths. We also compare
the explanation methods against two popular open-source
rule-based static analyzers CPPCheck and Flawfinder that
already have been used in several studies [56]. We enable
CPPCheck’s bug hunting option to reduce false positives.

Programs under test. For comparing the selected explana-
tion methods under realistic conditions, we consider a set of
programs under test (PUTs) with known vulnerabilities in
several previous versions. We choose these programs since
they are commonly used in fuzzing literature [8, 14, 40]
and different fuzzing harnesses are readily available. Note
that the source code of these programs is not included in
the training set of the learning models and hence unknown
to them.

1) Libxml2: The first program is an XML parser written
in C with around 70 known CVEs and around 5000 public
commits. The input seeds for the fuzzer are based on DTD
documents from the respective Git repository.

2) Libming: This program is a flash utility written in C
that has around 70 known CVEs associated with overflow
or DoS vulnerabilities. The initial seed is an exemplary
SWF file. We use the available fuzzing instrumentation
script from the AFLGo repository.

3) Giflib: The third program is a library to manipulate
GIF image files. Its repository has around 700 commits
with only eight publicly known CVEs. The input seed
is an empty string. We also use the available fuzzing
instrumentation code from the AFLGo repository.

To find potential vulnerabilities, we extract commits
that are associated with CVEs and bug fixes from their
respective versioning control systems, since this is currently
the state-of-the-art approach to build vulnerability datasets
[13, 56]. This extraction technique offers insights into
whether we can use our method to successfully assess
the explanation methods on popular models. We have 65,
69 and 8 vulnerable versions respectively for Libxml2,
Libming and Giflib.

Directed fuzzer. For establishing local ground-truth, we
rely on the directed fuzzer AFLGo which is a modified
version of the coverage-guided fuzzer AFL. Experiments
show that AFLGo provides a significant speed-up compared
to AFL when trying to reproduce crashes given known
targets [8]. We set a time budget of one hour to measure
the average crashes per path, the mean breakpoint hits and
the average crash distances.

All PUTs are compiled with an address sanitizer
(ASAN) to increase the yield of address-based crashes.
Sanitizers alter the instrumented code by inserting inline
reference monitors. This leads to crashes when policy
violations, e.g., reading from uninitialized memory, happen.
Consequently, we are capable of detecting several more



defect types related to memory violations. Lastly, we use
the GNU Debugger (GDB)6 for our crash analysis and
determine our extrinsic measures M1, M2 and M3.

Intrinsic criteria. We compare our approach for establish-
ing local ground-truth against intrinsic criteria presented in
the introduction, which are commonly used to assess expla-
nation methods [9, 21, 50, 58]. To measure the descriptive
accuracy (DA), we follow the strategy by Warnecke et al.
[50] and calculate the decrease in performance of a learning
model when removing the top ten relevant lines of code. If
an explanation method correctly identifies important code,
the performance will drop significantly and we get a high
DA. Conversely, if the explanation method is not able to
mark relevant code, the DA will be close to zero.

Furthermore, we calculate the sparsity of an explana-
tion by calculating the mass around zero (MAZ) [21] of
the explanations for all samples. In reality, EMs produce
heatmaps M with vastly different numerical scores, hence
we project these relevance scores to the range [0, 1] and
count the number of lines lower than a 0.5 threshold
averaged by the number of lines. This indicates how much
of the relevance mass lies lower than a 0.5 threshold. The
larger, the fewer lines have been marked as relevant.

All discovery and explanation methods are imple-
mented on top of Pytorch Geometric and all experiments
are run on separate AWS EC2 g4dn instances so that the
runs do not interfere with each other. We repeat them
n = 5 times as suggested by Klees et al. [29] since the
fuzzing process depends on randomness.

4.2. Experimental Results

We organize the discussion of the experimental re-
sults along with the four research questions posed at
the beginning of this section. Our goal is to develop
an understanding of how local ground-truth can help in
analyzing explanation methods in vulnerability discovery
and how it improves current practices in software auditing.

RQ1. — Can we establish ground-truth around vulner-
abilities predicted by learning-models? Given Figure 5,
we see that random relevance attribution is by far the
worst explanation method on Giflib with only around 3.5%
crashes per path on average according to M1. However,
it for example, beats PGExplainer and SmoothGrad on
Libming using Devign, proving it to be a strong base-
line. Hence, on some PUTs, graph-agnostic explanation
methods exhibit the same or worse M1 score as randomly
annotating code lines with relevance. Since the random
baseline attributes relevance to random code lines within a
vulnerable function, this method will generally find more
unique crashes per path over time compared to AFL alone,
as seen in the experiments with Libming and Libxml2.

Figures 6 present the mean breakpoint hits and mean
crash distances per explanation method for Devign and
ReVeal. The more left an EM is located on the map, the
closer are the targets to the crash-site (M3) and the higher
an EM, the more target lines lie on the crash’s execution
trace (M2). Hence, the green shading denotes a better
placement, while the red suggests worse performances

6. https://www.sourceware.org/gdb/

TABLE 1: The time needed to reproduce crashes from
CVEs.

CVE Project Devign+SmoothGrad AFL

CVE-2018-11226 Libming 3h30m4s±75s >24h
CVE-2018-7866 Libming 15m21s±23s 39m00s±65s
CVE-2014-0191 Libxml2 2m41s±54s 13m12s±73s
CVE-2016-5131 Libxml2 4m43s±14s 11m15s±29s
CVE-2016-4658 Libxml2 11m22s±33s 30m15s±22s
CVE-2014-3660 Libxml2 26m09s±19s 56m14s±22s
CVE-2015-7500 Libxml2 38m04s±04s 1h13m07s±43s

regarding the two criteria. Including M2 and M3 from
Figure 6 however, random is the worst method. Lastly,
there is always at least one graph-specific method per PUT
that outperforms random relevance assignment.

Except for Giflib, vanilla AFL finds fewer crashes
per path on average than the other explanation methods.
Surprisingly, AFL is among the best methods on Devign
for Giflib. This could be due to the overall bad performance
of Devign on Giflib compared to ReVeal. Table 1 shows
known CVEs contained in the PUTs with the average
time needed until the fuzzer reproduces the crash with and
without targets from the EM within a fixed period of 24
hours. In our experiments, the fuzzer in combination with
an EM reproduces the crash of every CVE substantially
faster than AFL alone.

Discussion. According to Table 1, the crash reproduction
is faster using the extracted lines from explanation methods
compared to vanilla AFL without any targets. After re-
executing the generated seeds from the directed fuzzer
during the crash analysis, using the debugger, we observe
that the lines were indeed hit and close to a crash-site,
given the results from Figure 6, since all EMs do have a
beneficial M2 and M3 score over random. This verifies
that the seeds are indeed targeted to the explained lines
and that the lines are in fact associated with the crash.

The heatmaps of the EMs advantageously direct
the fuzzer to the crash-sites. Thus, we can interpret
the heatmaps as local ground-truth around vulnera-
bilities.

RQ2. — Which explanation method provides the best
explanations according to extrinsic criteria? For visual-
ization purposes, consider Figure 5 showing the average
crashes per path (M1) over the fuzzing period for five runs
for Devign and ReVeal on all three PUTs. AFLGo uses
simulated annealing [28] to schedule the energy assignment
for the generated seeds [8]. We can see that the fuzzing
process gets more and more targeted until we observe an
asymptotic progression suggesting an optimum.

We can fit this behavior to a logarithmic function
parameterized by time: f(x) = a · log(x) + b, where a is
the logarithmic stretch and b denotes an intuition for the
initial found crashes per path. A higher a corresponds to
a steeper approximated slope and consequently denotes
the speed by the targets that let the fuzzer find crashes.
Since the first crashes are hardly targeted, we are more
interested in the steepness of the progression a and not
the initial performance b. The logarithmic stretch allows
us to simplify the comparison for the M1 and is depicted
in Table 2.



0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

GradCam SmoothGrad GNNExplainer PGExplainer Random AFL

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0

1

2

3

4

5

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

GradCam
SmoothGrad
GNNExplainer
PGExplainer
Random
AFL

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0

2

4

6

8

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

(a) Average unique crashes per path over time (M1) for Giflib, Libming and Libxml2 with Devign.

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0

1

2

3

4

5

6

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0

2

4

6

8

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

0 500 1000 1500 2000 2500 3000 3500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e 

cr
as

he
s p

er
 p

at
h 

(%
)

(b) Average unique crashes per path over time (M1) for Giflib, Libming and Libxml2 with ReVeal.

Figure 5: Fuzzing results for models Devign and ReVeal.

TABLE 2: Logarithmic stretch a per EM, PUT and model for average unique crashes per path over time (M1).

PUT Gradcam GNNExplainer SmoothGrad PGExplainer LineVul VulDeeLocator Flawfinder CPPCheck AFL RandomDevign ReVeal Devign ReVeal Devign ReVeal Devign ReVeal

Libming 2.01 2.09 2.15 2.06 2.14 2,16 2.00 2.04 2.12 2.10 1.50 1.54 1.91 1.98
Libxml2 0.26 0.26 0.48 0.21 0.26 0.25 0.23 0.37 0.23 0.25 0.09 0.19 0.21 0.25
Giflib 0.60 0.94 0.73 0.81 0.71 0.76 0.54 0.70 0.78 0.72 0.53 0.70 0.71 0.30

With the logarithmic stretch, we first assess the in-
fluence of the model on the EM’s output, for instance,
GradCam, SmoothGrad, GNNExplainer and PGExplainer
in Figure 5. Overall we can see that all EMs show a
beneficial progression over time for at least one dataset
and model combination since a higher a value denotes
a steeper increase. Judging by the best scores, graph-
specific EMs score four out of six and graph-agnostic EMs
score two out of six. PGExplainer finds more crashes on
ReVeal than all other methods on Devign for Libxml2 given
Table 2. GNNExplainer outperforms all other methods on
Libxml2 for Devign, since the others show an asymptotic
progression to a lower plateau. On Libming, however, they
are equally performing.

According to the M2 and M3 scores from Figure 6,
GNNExplainer gives the most concise explanations for De-
vign regarding the mean breakpoint hits while Smoothgrad
yields the best score concerning the mean crash distance.
This means that the explanations by GNNExplainer result
in targets that are more often part of the execution trace but
the distance to the crash-site is further away from the crash-
site. On the other hand, SmoothGrad does not have as many
breakpoints but the relevant lines are closer to the crash-site.
Conversely, GradCam gives the worst results since only a
few lines are relevant and those lines marked are further
away from the crash-site than for the other EMs. Even the
baseline highlighted more lines that have been part of crash

traces than GradCam. Furthermore, Figure 6b shows that
GNNExplainer yields the most relevant lines measured by
the breakpoints that were hit during crash reproduction and
the average distance to the crash-site. Although the average
crashes per path are best for PGExplainer, GNNExplainer
has the most precise explanations. GNNExplainer is on
the Pareto front for both maps.

At first sight, the model-integrated EMs perform simi-
larly compared to the separate EMs as indicated by Figure
8b and Table 2. LineVul is slightly better on Libming and
Giflib, while VulDeeLocator is better on Libxml2 but still
only on par with Random. Given Table 3 VulDeeLocator,
however, has a far better M2 score, which indicates that the
explanation is more accurate, while less close to the local
ground-truth given the M3 metric compared to LineVul.
Both methods outperform GradCam and PGExplainer but
are inferior to GNNExplainer and SmoothGrad.

Discussion. Our evaluation reveals, that the choice of EM
is also dependent on the choice of discovery model. A
different model might work better with different EMs. In
general, however, are graph-specific EMs, for instance, GN-
NExplainer, achieving the best results in our experiments
for graph-based vulnerability detection models as seen in
Table 3. The relevant explained lines are all close to the
examined crashes and are, compared to the others, more
often part of the crashing execution trace. We also see
that graph-specific methods also perform better regarding



TABLE 3: M2 and M3 comparison between model-
integrated and model-independent EMs with standard
deviation.

Model Mean Breakpoint Hits M2 Mean Crash Distance M3

Random 8.21 ± 0.40% 0.124 ± 0.014s

GNNExplainer 15.48 ± 0.22% 0.084 ± 0.002s
SmoothGrad 11.06 ± 0.13% 0.077 ± 0.003s
PGExplainer 10.04 ± 0.37% 0.088 ± 0.010s
GradCam 9.26 ± 0.05% 0.097 ± 0.006s
VulDeeLocator 10.54 ± 0.14% 0.094 ± 0.002s
LineVul 9.97 ± 0.16% 0.084 ± 0.003s

M1 where graph-specific EMs achieve the best scores in
four out of six while graph-agnostics only in two out
of six experiments according to Table 2. Contrary to the
empirical study of Ganz et al. [21] we find that graph-
specific methods are more veracious than graph-agnostic
EMs. We thus conclude that the extrinsic criteria enable us
to qualitatively compare EMs, which has not been possible
before for vulnerability discovery.

Model-integrated EMs are a viable replacement for sep-
arate vulnerability discovery models and EM combinations.
In our experimental study, however, we observe two model-
separate beat their performance, namely GNNExplainer
and SmoothGrad.

Our extrinsic criteria indicate that graph-specific
explanation methods highlight vulnerabilities best.
When possible, these methods should be used to
explain code in graph-based vulnerability discovery.

RQ3. — How do extrinsic and intrinsic criteria differ
when comparing explanation methods? We evaluate two
commonly used intrinsic criteria for ReVeal, Devign,
VulDeeLocator and LineVul on the PUTs in Figure 7.
We measure the sparsity (MAZ) and descriptive accuracy
for each EM and PUT. The higher and the further to
the right the result is in the graph, the better the EM
is according to the intrinsic criteria. Overall, Gradcam
and Smoothgrad yield the best DA for ReVeal. Most
explanations however lie closely around zero according to
the DA. Considering the sparsity, only about 75% of all
code lines’ relevance scores lie within the range of [0, 0.5]
for GNNExplainer. PGExplainer has the best MAZ for
all PUTs and for both models since around 0.95− 0.98%
of the code lines score an accumulated relevance lower
than 50%. Our results are in line with Ganz et al. [21]
since according to them, Smoothgrad is among the best
candidates considering the DA and PGExplainer produce
the most concise explanations.

Reviewing the snippet in Figure 1, we note that
VulDeeLocator does not detect the sample, while LineVul
highlights lines 14, 23 and 31. Interestingly, it is able to
precisely pinpoint the crash-site, however, it seems to also
detect more false positives. Given their intrinsic evaluation
in Figure 7c, we can support the observation that model-
integrated methods appear to have an abundant heatmap,
given their sparsity score, but achieve an up to 400% better
DA than the separate EMs, i.e. those that are not coupled
with the discovery model. VulDeeLocator, on the other
hand, has an inferior DA than LineVul. Only the gradient-
based EM GradCam (on ReVeal) has a similar Descriptive

0.07 0.08 0.09 0.10 0.11 0.12 0.13

Mean crash distance (s)

4

6

8

10

12

14

16

M
ea

n
br
ea

kp
oi
nt

hi
ts

(%
)

GNNExplainer

SmoothGrad
PGExplainer

Gradcam

Random

1(a) Pareto map for Devign.

0.07 0.08 0.09 0.10 0.11 0.12 0.13

Mean crash distance (s)

4

6

8

10

12

14

16

M
ea

n
br
ea

kp
oi
nt

hi
ts

(%
)

GNNExplainer

SmoothGrad
PGExplainer

Gradcam

Random

1(b) Pareto map for ReVeal.

Figure 6: Mean breakpoint hits (M2) and mean crash
distance (M3).
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Figure 7: Intrinsic evaluation. Red, Green and Blue denote
Libxml2, Giflib and Libming respectively.

Accuracy as LineVul, which mirrors the results from their
intrinsic evaluation [20].

Discussion. We can see that the DA for Devign yields no
particular information whatsoever. Gradcam and Smooth-
grad yield a better DA for ReVeal. Although their DA
is superior compared to GNNExplainer and PGExplainer,
their located code lines are, however, unrelated to the
actual underlying vulnerability concluding from our ex-
trinsic results. Furthermore, Smoothgrad has a low DA on
Libming although its speedup of the crash reproduction



was the fastest, resulting in the highest M1 score given
Table 2. The performance of the EMs measured by their
intrinsic criteria in Figure 7 shows a large discrepancy
from the performances measured by our extrinsic criteria.
The descriptive accuracy is similar across all PUTs, EMs
and even models. In contrast, our extrinsic criteria show
vastly different performance plateaus among the EMs taken
from Table 2 and the Pareto maps from Figure 6a and 6b.

It has been shown that the DA is sensitive to learned
artifacts in the model, such as feature overfitting [21, 58].
This can be explained analogously with an image recogni-
tion task: Imagine evaluating a model that classifies boats
and cars. Intuitively, the model could learn to focus on
whether the image contains water or not. Consequently,
removing features such as coastline and water causes the
model’s performance to drop significantly, resulting in
a higher DA. Hence, the most relevant features are not
important for solving the actual underlying task and the
DA fails to capture this. Moreover, if a model generalizes
well over its features, it may be robust to the removal of its
top features, resulting in a low DA while still performing
well in its task.

It turns out that this feature overfitting, measured by
the discrepancy between intrinsic and extrinsic criteria,
is even more extreme when the model and the EM are
jointly trained. The tighter coupling between VulDeeLo-
cator and LineVul’s model and EM causes the EM to
be more sensitive to the overfit artifacts, i.e. , noise,
under or overrepresented features, or outliers. LineVul
and VulDeeLocator, for instance, are trained on vulnerable
functions and their associated patches. The modified lines
in the patch are used to train their EM. This introduces
bias, for instance in Example 1, another possible fix might
as well change the return type of xmlStrlen from int to
size_t. However, the maintainers decided against this7.
Thus, the patch and the bug location can be very different.
This might be the reason why LineVul highlights line 23,
since buffer length calculations might be often part of a
patch in their datasets.

More formally speaking, the disadvantage of the de-
scriptive accuracy is the double use of model f : firstly as a
model from which the relevant code lines are calculated and
secondly as an oracle to evaluate them. Since M1 uses a
directed fuzzer, we can remove any bias by the decoupling
of the oracle from the discovery model. Another advantage
of our extrinsic criteria is that they rely on an oracle
based on dynamic analysis instead of a static analyzer f .
Christakis et al. and Dietrich et al. state that dynamic
analysis should be preferred to validate the soundness of
a static analyzer [17, 18]. Hence, we can conclude that
M1 uses a more faithful oracle for the real-world task of
vulnerability discovery.

Considering the sparsity, GNNExplainer and LineVul
achieve the worst MAZ results, and PGExplainer and
Smoothgrad yield the best. However, judging by how often
their lines lie on the execution trace and how close they
were to the crash, they perform exactly counter-factually
using our extrinsic criteria.

Suppose a line from an explanation was neither close
to the crash-site nor was it even executed during a fuzzing
iteration. In that case, we can clearly say that removing this

7. https://bugzilla.gnome.org/show_bug.cgi?id=763071

feature does not affect M1 but increases the conciseness
of an explanation. On the other hand, we can take into
account what it means for an explanation to be maximally
concise. Consider an example where every highlighted line
is part of the execution trace and maximally close to the
crash-site. Removing a single line might give us a more
concise explanation but at the cost of valuable information.
We conclude that M2 and M3 measure sparsity, too, but if
we rely on the intrinsic sparsity to compare EMs, we may
end up with an EM that labels a few code lines as relevant
but none of these actually deliver information to locate or
fix the bug. As an example of this phenomenon, consider
Smoothgrad in Figure 1. Therefore, the ability of our
extrinsic criteria to measure EMs is closer to the underlying
task of vulnerability discovery and less susceptible to
learned biases.

Our criterion M1 relates to the descriptive accuracy,
while M2 and M3 describe sparsity. However,
our extrinsic criteria provide a better basis for
comparison, as their results turn out to be more
diverse and consistent compared to intrinsic criteria.

RQ4. — How do rule-based auditing tools perform
against explanation methods? We compare Flawfinder and
CPPCheck against the explanation methods in Table 2. All
static analyzers are inferior in our experiments and only
beat the random baseline on Giflib. Figure 8a exemplary
visualizes the average crashes per path (M1) for the expla-
nation methods and the static analyzers over the fuzzing
duration for Libxml2 and Devign. Over time, except
GNNExplainer and Flawfinder, all methods converge to a
similar plateau. Towards the end, CPPCheck identifies more
crashes than Flawfinder. It has already been observed in the
work of Arusoaie et al. [3], that CPPCheck is more effective
than Flawfinder. In general, the improved effectiveness of
the explanation methods compared to the static analyzers
is likely due to the fact that Devign and ReVeal are better
at detecting vulnerable code artifacts.

For visualization purposes, we want again to point to
Figure 1 which shows a critical vulnerability in Libxml28.
Flawfinder reports a possible flaw in memcpy due to len
not being checked. Hence, Flawfinder is the only method
to correctly detect the crashing location without any false
positive, although the accompanying description is wrong
whatsoever since len is not the problem. CPPCheck on
the other hand does not detect the flaw, even with the
bug-hunting option disabled, resulting in potentially more
false positives.

Discussion. As previously pointed out, another advantage
is that our extrinsic criteria allow us to benchmark vulner-
ability discovery models with their EMs against classical
rule-based static analyzers, which is not possible with
intrinsic criteria. In our experiments given Figure 8a, we
see that all EMs beat the open-source static analyzers
when comparing the average found crashes over time in
our experimental study.

8. https://gitlab.gnome.org/GNOME/libxml2/-/commit/8fbbf55
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Figure 8: Exemplary plot for the average unique crashes
per path over time for Libxml2.

Our extrinsic criteria indicate that the combination
of EMs and learning-based vulnerability discovery
models reveal code relevant to vulnerabilities better
than traditional static analyzers.

5. Limitations and Implications

We proceed to discuss the limitations and implications
of our approach and provide recommendations for its
application in practice.

Limits of fuzzing. If we assume that a vulnerability
is present in the program under test, it is not known
in advance whether a fuzzer can reach it due to time
constraints or roadblocks. Worse, it is not even certain
whether the defect actually causes a crash. Clearly, our
approach is limited to vulnerabilities that can be generally
identified through a fuzzer. Interestingly, however, such
vulnerabilities largely overlap with those that can be
uncovered using learning-based vulnerability discovery

To illustrate this relation, we compile a non-exhaustive
list of Common Weakness Enumeration (CWE) numbers
that vulnerability discovery models, such as [16, 20, 49],
are capable of detecting statically. We then cross-reference
these CWE numbers with those that fuzzers, such as [24],
are able to find, and present the results in Table 4 in the
Appendix. We conclude that not all vulnerabilities in a
dataset can be successfully uncovered by fuzzing, but we
can still gather enough evidence using some descriptive
samples to evaluate one explanation method in preference
to another, which after all, is our main proposition.

Moreover, AFL, the fuzzer we employ, suffers from
hash collisions in the way it stores visited branches9. As
a consequence, a random portion of the seeds that have
been found is dropped before the crash analysis. However,
this (statistically) does not influence the outcome for M2

and M3 because both average quantities (breakpoint hits,
or crash distance) over the set of seeds.

Implications. We have seen that intrinsic criteria can lead
to misleading results. Although our approach is not perfect,
it is an important step forward that helps to better compare
and evaluate explanation methods. In particular, when
learning-based vulnerability discovery methods are jointly
applied with fuzzing, for example as part of a security audit,
our approach is a natural fit and allows determining the best
explanations methods for the program under test. Moreover,
our method is applicable in all scenarios where fuzzing
is effective and thus can serve as an oracle to improve
learning-based vulnerability discovery. This, for instance,
holds for all open-source software currently investigated
in the OSS-Fuzz project.

However, there are also scenarios where our approach
is not suitable for evaluating explanation methods. If the
program under test is small and only a few samples are
available, the proposed criteria may not provide meaningful
results because not many bugs can be validated by the
fuzzer. Similarly, if the time budget is limited, the fuzzer
may not have enough processing time to go through the
important branches. In these cases, our extrinsic criteria
may not be meaningful. Still, we recommend sticking to a
manual assessment of samples in these cases, rather than
relying on intrinsic criteria.

6. Related Work

Our work provides a novel link between two active
areas of security research: vulnerability discovery using
machine learning and directed fuzzing. As a result, there
exist different prior work related to our approach that we
discuss in the following.

Learning-based vulnerability discovery. The combination
of GNNs and code graphs, considered in our work, has
proven successful in the discovery of bugs and security
vulnerabilities in a series of research [11, 15, 48, 56]. For
example, Zhou et al. introduce the first gated graph neural
network on code property graphs to identify bugs and
vulnerabilities collected from real-world commits. Their
approach outperforms popular open-source and commercial
static analyzers as well as token-based learning models
[56]. Cao et al. choose a different graph representation of
the underlying source code. They combine data-flow and
control-flow graphs with the abstract syntax tree to the
code composite graph [11].

Recently, Chakraborty et al. reveal that several state-
of-the-art datasets to evaluate these models are not re-
alistic [12]. In a similar vein, Arp et al. [2] discuss
common pitfalls when working with methods learning-
based vulnerability discovery. We argue that these problems
can only be tackled if appropriate explanation methods are
employed and hence the process of vulnerability discovery
becomes transparent to the practitioner.

9. https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt



Explanation methods. Several recent surveys have de-
veloped taxonomies, algorithms and evaluation criteria
for explanation methods in machine learning [6, 47].
With the rise of graph neural networks, several works
ported the underlying classic explanation concepts to the
graph domain [4, 41], as well as completely new graph-
specific algorithms have been invented [36, 44, 54]. For
instance, Yuan et al. describes a comprehensive taxonomy
for explainable graph-specific machine learning with a cat-
egorization of current algorithms and evaluation methods
[55]. Guo et al. introduce a black-box explanation method
for security-critical machine learning models [23]. Some
recent approaches incorporate EMs in the vulnerability
discovery task to integrate interpretability directly in the
learning process [20, 25, 34]. However, all work in this
direction focuses on either intrinsic criteria evaluating the
explanations by the descriptive accuracy or sparsity or
suggesting human expert studies to validate the actual
usefulness. Closest to our approach, Sanchez-Lengeling
et al. compare explanation methods using several types of
ground-truth for molecule graphs [43].

Comparing explanation in security. Explanation methods
have already been applied to learning models in security in
different studies. Warnecke et al. show that it is non-trivial
to validate security-critical models from explanations given
by several algorithms with a predefined set of evaluation
criteria [50]. However, explaining the decisions of such
models is crucial [2]. Zou et al. present a method to
extract important tokens from token-based vulnerability
discovery models. The extraction works by perturbing
input source code pieces such that the classification label
switches from 1 to 0. Black-box explanation methods
yield better portability between different models but the
overall performance deteriorates. Furthermore, they use
descriptive accuracy to measure the performance. Since
this is an intrinsic metric, it is impossible to make any
assumptions about the veracity [58]. Finally, Linardatos
et al. state that it is unfeasible to rank EMs by their ability
to make a model’s decision interpretable [35].

Directed fuzzers. Since we rely on directed fuzzers,
we briefly discuss popular approaches, including AFLGo
[8] and Hawkeye [14]. Both model the targeted input
generation as a power-schedule problem. Beacon [26]
tries to incorporate path pruning into the seed selection
process and hereby accelerates crash reproduction com-
pared to AFLGo and Hawkeye. Targetfuzz [10] prioritizes
the initial seed selection to speed up directed fuzzing.
Other works focus on improving the instrumentation of
grey-box fuzzers by heuristically extracting potentially
interesting code regions, for example in the work by
Österlund et al. [40]. Zhu et al. use explanation methods
in conjunction with an NLP-based bug-detecting model to
speed up the directed fuzzer AFLGo. V-Fuzz also speeds up
fuzzing with learning techniques: it uses a neural network
to detect likely vulnerable spots in binary programs [31].

Static analysis report verification. From a broader per-
spective, our work compares static code analysis methods
using dynamic analysis. This approach has been also
persuaded in other contexts. For example, Christakis et al.
[17] validate unverified and potentially unsound static code

analysis reports using dynamic code execution to reduce
false positives. Similarly, Wüstholz and Christakis [52]
build upon this work and use online static analysis to guide
a fuzzer by analyzing each path during the fuzzing process
right before a new input is selected. Closely related to our
explanation oracle, Barr et al. [5] define testing oracles
as mechanisms that decide whether a set of system tests
are relevant or not. Dietrich et al. [18] state that it makes
more sense to validate static analysis results using oracles
based upon dynamic analysis. All these approaches are
related to our work, yet they focus on different types of
static tools and do not consider learning-based discovery
methods and their explanation.

7. Conclusion

In this work, we present a novel method to compare
explanation methods for learning-based vulnerability dis-
covery models by their veracity. Current advances in the
field consider vulnerability discovery as a classical machine
learning task. They fail to connect it to the underlying
problem, which is static program analysis. Since there is
a large pool of explanation methods available to choose
from, with each yielding vastly different explanations, we
present an appropriate and novel method to systematically
and automatically evaluate extracted explanations for deep
learning-based vulnerability-detecting models.

We propose directed fuzzing to selectively generate
ground-truth and verify and compare the relevance of
explanations. We show that several general assumptions
drawn from past experimental studies are biased. For
instance, recent work uses inadequate oracles or none
at all to compare EMs. This leads to results that advise
against black-box or graph-specific explanation methods
in past works, such as GNNExplainer. However, by using
dynamic execution as a more appropriate oracle, our results
suggest to still consider black-box and graph-specific
EMs for vulnerability discovery. In addition, we present
evidence that integrating explanation methods directly
into the learning task to discover weaknesses can further
compromise performance comparison. We conclude that
our method is suitable for testing explanation methods
and verifying practical considerations of whether or not
learning-based vulnerability discovery models should be
incorporated into everyday secure software development.
Based on our results, we hope to foster research in the
fields of explainable machine learning for vulnerability
discovery.
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A. Appendix

TABLE 4: CWEs detected by fuzzers (F) and ML models (M) as reported by [16, 20, 24, 49].
CWE Description Detected By Sanitizer needed

20 Improper Input Validation FM
22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) FM
74 Improper Neutralization of Special Elements in Output Used by a Downstream Component (’Injection’) M
77 Improper Neutralization of Special Elements used in a Command (’Command Injection’) M
78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) M
119 Improper Restriction of Operations within the Bounds of a Memory Buffer FM
125 Out-of-bounds Read FM ASAN
130 Improper Handling of Length Parameter Inconsistency F
131 Incorrect Calculation of Buffer Size F
133 String Errors F
138 Improper Neutralization of Special Elements FM
172 CWE-172: Encoding Error F
189 Numeric Errors F
190 Integer Overflow or Wraparound FM UBSAN
191 Integer Underflow (Wrap or Wraparound) FM UBSAN
200 Exposure of Sensitive Information to an Unauthorized Actor FM
269 Improper Privilege Management M
284 Improper Access Control M
285 Improper Authorization M
287 Improper Authentication FM
310 Cryptographic Issues F
362 Concurrent Execution using Shared Resource with Improper Synchronization (’Race Condition’) FM TSAN
369 Divide By Zero FM
393 Return of Wrong Status Code F
399 Resource Management Errors FM
400 Uncontrolled Resource Consumption FM
404 Improper Resource Shutdown or Release FM
415 Double Free FM
416 Use After Free F
434 Unrestricted Upload of File with Dangerous Type F
457 Use of Uninitialized Variable F
465 C: Pointer Issues F
467 Use of sizeof() on a Pointer Type M
469 Use of Pointer Subtraction to Determine Size FM UBSAN
476 NULL Pointer Dereference FM MSAN
514 Covert Channel F
573 Improper Following of Specification by Caller M
610 Externally Controlled Reference to a Resource in Another Sphere M
611 Improper Restriction of XML External Entity Reference F
617 Reachable Assertion FM
662 Improper Synchronization F
665 Improper Initialization FM
666 Operation on Resource in Wrong Phase of Lifetime M
668 Exposure of Resource to Wrong Sphere M
670 Always-Incorrect Control Flow Implementation M
674 Uncontrolled Recursion F
681 Incorrect Conversion between Numeric Types F
682 Incorrect Calculation F
703 Improper Check or Handling of Exceptional Conditions F
704 Incorrect Type Conversion or Cast FM
706 Use of Incorrectly-Resolved Name or Reference F
754 Improper Check for Unusual or Exceptional Conditions FM
758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior FM UBSAN
770 Allocation of Resources Without Limits or Throttling FM
772 Missing Release of Resource after Effective Lifetime FM LeakSAN
787 Out-of-bounds Write FM
834 Excessive Iteration FM
835 Loop with Unreachable Exit Condition (’Infinite Loop’) F
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