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ABSTRACT

Hosts infected with malicious software, so called malware,
are ubiquitous in today’s computer networks. The means
whereby malware can infiltrate a network are manifold and
range from exploiting of software vulnerabilities to trick-
ing a user into executing malicious code. Monitoring and
detection of all possible infection vectors is intractable in
practice. Hence, we approach the problem of detecting ma-
licious software at a later point when it initiates contact with
its maintainer; a process referred to as “phoning home”. In
particular, we introduce Botzilla, a method for detection
of malware communication, which proceeds by repetitively
recording network traffic of malware in a controlled envi-
ronment and generating network signatures from invariant
content patterns. Experiments conducted at a large univer-
sity network demonstrate the ability of Botzilla to accurately
identify malware communication in network traffic with very
low false-positive rates.
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Malicious software, so called malware, is predominantly
used for profit rather than fun—this is the verdict of a num-
ber of recent studies and industry reviews [e.g., 2, 8, 25].
A crucial role in the underlying business models belongs
to harvesting of confidential information such as passwords,
credentials, or activity patterns from compromised hosts.
Another possibility to capitalize on infection is given by il-
legal remote control of compromised hosts, for example in
form of botnets. Both of these exploitation patterns require
the existence of a communication channel between compro-
mised systems and the remote attacker. Such communi-
cation, known as “phoning home”, may include contacting
IRC servers, accessing HTTP services, downloading of files
via FTP, or communication using proprietary protocols.

Despite a tremendous effort spent on detection and re-
moval of malicious software on the way to its destination,
the success rate of target system infection remains alarm-
ingly high. This is largely due to an enormous variability of
malware, as well as an increasing deployment of advanced
infection techniques such as drive-by vulnerabilities, typo-
squatting, or social engineering. Even if the monitoring of
incoming network traffic succeeds in sealing off a targeted
system, a compromise may still take place via an alterna-
tive transport medium, for example, a USB device.

Consequently, it becomes increasingly important to iden-
tify the communication between attackers and their victims.
Such detection brings about two benefits: one can easily
identify and disinfect compromised systems and learn about
attackers’ infrastructures and take countermeasures. The
main difficulty of detecting malware communication stems
from a versatility of deployed network protocols as well as
from a frequent use of obfuscation techniques. Previous ap-
proaches to detection of malware communication roughly
fall into two categories. Vertical correlation techniques de-
tect infected hosts using hand-crafted communication mod-
els [e.g., 3, 5]. Horizontal correlation techniques learn net-
work patterns induced by infections of multiple systems [e.g.,
4, 6, 21]. Both approaches have significant limitations: man-
ually generated models lack the ability to detect novel and
unknown patterns of malware communication, whereas hor-
izontal correlation techniques rely on salient infection fea-
tures across multiple hosts which are not necessary observ-
able for all malware types, for example keyloggers.

In this paper, we introduce Botzilla, a generic method for
detecting the “phoning home” of malicious software. The
underlying idea of Botzilla is the well-established concept of



automatic signature generation [e.g., 12, 16]. In contrast to
previous work, Botzilla can automatically generate accurate
models of malware communication even if the malware is
observed only on a single infected host. Botzilla proceeds
by capturing malware binaries in the wild and monitoring
their network activity during repetitive execution of each
sample in a controlled environment. Invariant content pat-
terns are extracted from the recorded network traces and
assembled into concise signatures suitable for deployment
in high-speed networks. The whole process—from captur-
ing of malware to signature generation—is fully automatic,
which significantly reduces the time lag between the sight-
ing of a new malware and the availability of a corresponding
signature. Moreover, by randomly changing parameters of
the controlled environment during repetitive execution, such
as the date of the system, our method is hardened against
several evasion attacks [e.g., 17, 19].

Experiments conducted in a large university network dem-
onstrate the ability of Botzilla to accurately identify mal-
ware communication with low false-positive rates. In an
offline experiment our system detected 94.5% of recent mal-
ware classes with only a single false alarm in one million
network flows. A further live application of Botzilla over a
period of 4 days resulted in discovery of 219 true infections
of malware in the university network. During this appli-
cation, Botzilla attained a false-positive rate of 0.00004%
(295 false alarms in a total of 840 million network flows),
which is remarkably low given that no manual adaptation
or refinement of generated signatures was performed.

The rest of this paper is organized as follows. Current
techniques used in malware communication are discussed in
Section 2. Our method Botzilla is introduced in Section 3
and its experimental evaluation is presented in Section 4. We
provide a discussion of related work in Section 5. Concluding
remarks are given in Section 6.

2. MALWARE COMMUNICATION

A prevalent feature of current malware is the existence of
a communication channel from compromised hosts to the re-
mote attacker. Such channel allows the attacker to retrieve
information and issue commands that are carried out by in-
fected machines. In contrast to classic Internet worms, for
example Code Red [15] or Slammer [14], modern malware al-
most always employs such functionality. The remote control
over infected machines enables an attacker to abuse compro-
mised systems for financial profit, for instance to distribute
spam messages or steal password and credential informa-
tion. Thus, means for detection of malware communication
are crucial to combat current threats on the Internet.

Unfortunately, the “phoning home” traffic of malware can
take extremely heterogeneous forms and may include ob-
fuscation, encryption, covert channels, and even steganog-
raphy. Hence, accurate detection of malware communica-
tion in network traffic is, in general, hard if not impossible.
Surprisingly, however, strong encryption and covert chan-
nel techniques are not widely deployed in current malware
communication, and with rare exceptions, such as Storm [9]
and Nugache [24], the majority of current malware employs
clear-text protocols.

The mechanisms used in malware communication can be
classified as shown in Figure 1. The communication direc-
tion describes the mechanism that is used by the infected
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Figure 1: “Phoning home” mechanisms.

machines to receive commands from the attacker. On the
one hand, this mechanism can be push-based if the attacker
sends the command, e.g., to all bots within an IRC channel.
On the other hand, the infected machines can periodically
pull for new commands and send requests to the attacker.
Orthogonal to the communication direction is the commu-
nication architecture, which describes the actual communi-
cation structure. This can be a centralized model in which
the attacker uses one central server to which infected ma-
chines connect. Alternatively, the architecture can also be
implemented as a peer-to-peer system. Figure 1 provides
an example for each of the four classes of “phoning home”
mechanisms. No malware that uses a push-based, peer-to-
peer communication exists in the wild and thus we focus in
this work on the remaining three communication classes.

3. DETECTING THE “PHONING HOME”

The majority of current malware implements communica-
tion protocols that exhibit invariant content patterns. For
example, several bot networks retrieve instructions using the
IRC protocol where the respective traffic is characterized by
particular strings of channel and user names. Even encryp-
tion does not necessarily rule out invariance, for instance as
in the case of Storm and Nugache, whose encrypted commu-
nication features distinct byte patterns [see 24]. We exploit
such invariance to automatically construct network signa-
tures for malware communication. The resulting method
Botzilla operates in three phases:

1. Malware capturing. In the first phase, recent malware
binaries are collected from the network by means of
honeypots, forensic analysis of security incidents, and
other automated approaches (Section 3.1).

2. Repetitive execution. “Phoning home” is triggered and
monitored by repetitive execution of each malware bi-
nary in a controlled environment (so called sandnet)
with varying network and host settings (Section 3.2).

3. Signature gemeration. Using the monitored network
traces for each binary and a pool of regular traffic,
invariant patterns are extracted and refined to network
signatures of malware communication (Section 3.3).

An overview of our approach is shown in Figure 2 which
presents the repetitive execution in a sandnet and the sig-
nature generation process. In practice, all three phases can
be realized on a single network system such that the delay
between the first appearance of a new malware binary and
the deployment of a corresponding network signature can be
limited to a few minutes—a crucial advantage over regular
generation and distribution of network signatures.
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3.1 Malware Capturing

The effective generation of network signatures for malware
communication critically depends on proactive capturing of
malware samples. The timely availability of new signatures
ensures that a monitored network domain can be protected
prior to a potential mass-infection. To this end, we consider
several techniques for collecting malware binaries in the wild.

First, we employ network honeypots (such as Nepenthes [1]
and Amun) which emulate common vulnerabilities in net-
work services and thereby collect malware propagating us-
ing corresponding attack vectors. To capture malicious bi-
naries involved in client-side infections, we make use of hon-
eyclients, a special type of honeypots designed to capture at-
tacks targeting network clients [20, 27]. The third capturing
strategy employs so called spamtraps which automatically
collect recent spam using dedicated mailboxes. Binaries are
then extracted from contained attachments to capture mal-
ware that uses e-mail as a propagation vector. Finally, sam-
ples identified using forensic analysis of security incidents
can be manually contributed to our system.

3.2 Repetitive Execution

Once malware is captured from the network, the auto-
matic monitoring of “phoning home” communication is trig-
gered. FEach collected malware binary is repetitively exe-
cuted in a controlled environment where outgoing and in-
coming traffic is recorded over a period of several minutes.
We denote this environment as a sandnet. To evoke differ-
ent patterns of malware communication, the sandnet is al-
tered during each repetition by automatically changing the
date, the network environment, the operating system and
the time of day. In our experiments each malware binary
is executed at least 10 times using different IP addresses
and variants of the operating system. This setting ensures
that the recorded traffic comprises a large spectrum of com-
munication covering several variations of “phoning home”
messages. For example, the majority of malware transfers
information regarding the operation system version during
the first contact.

The execution in a sandnet may introduce artifacts into
the network traffic such as local host and domain names. To
limit the impact of possible artifacts on the signature gen-
eration, we apply a blacklist filter to the collected network
data which replaces occurrences of predefined strings with
random byte sequences. In our setting, we filter contents
related to the network domain and the setup of the sandnet,
such as the domain name and the time of day. While we can
not generally rule out the existence of artifacts, the empirical
evaluation presented in Section 4 demonstrates the ability
of Botzilla to generalize from the particular environment of

the considered sandnet. To limit propagation of the malware
outside of the sandnet, we block access to certain network
services. For example, we redirect all outgoing SMTP traf-
fic to a network sink to avoid spam distribution. Moreover,
we block communication targeting services with well-known
security vulnerabilities, such as DCOM and SMB services.

3.3 Signature Generation

The traffic recorded in the sandnet enables us to infer typ-
ical and invariant contents in the malware communication
which provides the basis for generation of network signa-
tures. The automatic construction of signatures originates
from the field of intrusion detection where corresponding
methods have been widely studied [e.g., 10-12, 16, 23, 28].

The signature generation component of Botzilla extends
the Bayesian technique originally proposed in Polygraph [16]
to the setting of network signatures for malware communi-
cation. In comparison to more advanced approaches, such as
Nemean [28], that incorporate session-level context, we fo-
cus on the contents of individual network flows as basis for
signature generation. This setting provides a balance be-
tween an expressive representation and sufficient run-time
performance of signature matching—a crucial requirement
for the application of Botzilla in high-speed networks.

Before presenting this signature generation process in more
detail, let us first define the notion of a signature. A signa-
ture S is defined as a tuple (T, 0) where T is a set of strings
associated with probabilities and 6 a threshold value. We
denote the i-th string of a signature as a token t; and refer
to the corresponding probability as its support s; € (0,1). A
signature S matches the payload = of a network flow if the
sum of support values for all tokens contained in x exceeds
the threshold value 6. The use of support values allows for
automatic generation of different types of signatures, such
as Boolean conjunctions and disjunctions [see 16].

Two data sets are required for automatic generation of
signatures: the (malicious) network traffic monitored during
multiple executions of a malware binary, denoted as X, and
regular traffic recorded at the network site to protect, de-
noted as X~ . The network data in both sets is represented
in form of reassembled network flows (TCP connections and
UDP packets), where the payloads of incoming and outgo-
ing packets are considered jointly. Using these data sets,
signatures are inferred in two stages as depicted in Figure 3.

[ Malware traffic X* } [ Regular traffic X~ }

‘ Token extraction }—" Signature assembly }—{

Figure 3: Signature generation process of Botzilla.
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Token extraction. In the first stage of the signature gen-
eration, tokens are extracted from the malicious data X .
In particular, every substring contained in at least d net-
work flows with a minimum length of ! is chosen as a po-
tential token for the signature. By choosing the parameter
d sufficiently high, say 80%, this procedure ensures that the
extracted tokens reflect invariant patterns occurring in the
majority of communication traces. In our implementation,
the extraction is realized using a generalized suffix tree which



enables linear time retrieval of arbitrary substrings [7]. The
extracted tokens may still overlap with each other. Hence,
we apply a constraint on the set of tokens: a token ¢; is dis-
carded, if it is substring of another token ¢;, unless there are
d further occurrences of t; independent of ¢;. That is, the
token t; is only kept if it occurs often enough outside of ¢;.
The size of the original set of tokens is strongly decreased
by this constraint and so are the redundancy and the length
of the resulting signatures.

Signature assembly. Based on the extracted tokens, a
signature with support values and a threshold is assembled.
Initially, the set of tokens is refined using the regular network
flows in X . For each token t; two values are computed: the
frequency f* of ¢; in the malicious communication and the
frequency f~ of t; in the pool of normal data. Clearly, to-
kens with f~ > f' must be excluded from a signature as
they occur more frequently in normal traffic than in mal-
ware communication. Moreover, we remove tokens that are
predominant in normal traffic, that is, the ones with f~ > [
for some reasonable limit [. The final set of tokens T is
now obtained by associating the token t; with s; := fT, its
support in the set of malicious traffic X . The rigorous se-
lection of tokens significantly reduces the false alarm rate
in practice, however, for some malware binaries no signa-
tures can be inferred as simply no suitable tokens exist that
fit the stringent criteria above. It remains to select an ap-
propriate threshold 6. The threshold calibration process is
performed on X' and X, where for all possible threshold
values detection and false-positive rates are determined. In
our implementation, we choose the threshold with focus on
the lowest possible false-positive rate, while maintaining the
best detection accuracy available at that rate. Using the
same procedure, we also identify optimal configurations for
the parameters [ and d in token extraction. Finally, 8 and
the support values are normalized for better comparability.

Signature filtering. The presented procedure assigns a
signature to the network traffic of a particular malware bi-
nary. In practice, several similar binaries may be captured
in a short time frame, which can lead to highly redundant
network signatures. To address this problem, we devise a fil-
tering scheme for removal redundant signatures. We proceed
by removing signatures that yield identical detection perfor-
mance to other signatures on the set of malicious traffic X~
and regular traffic X . This simple approach performs well
in practice, as demonstrated in Section 4.

4. EMPIRICAL EVALUATION

The two essential advantages of Botzilla over previous
methods for detection of malware communication are au-
tomatic signature inference and high performance during
deployment. We verify these features in large-scale experi-
ments carried out on data collected from a major university
network. We first present the results of an offline experiment
in which we evaluate the detection accuracy on 20 typical
malware classes (Section 4.1) and then present results of a
live deployment of Botzilla at a central gateway of the uni-
versity network (Section 4.3).

4.1 Detection Performance

For the offline experiment, we consider a set of 20 typi-
cal malware classes listed in Table 1. The different classes
cover a broad spectrum of “phoning home” activity, rang-
ing from simple HTTP and IRC communication to propri-

Malware class Category Ports
A Banload Trojan & Spyware 21
B Hupigon Trojan & Downloader 80
C  Infostealer Trojan & Keylogger 80 ... 9222
D Ircbot Botnet 80, 88, 6667
E  Koobface Worm 80, 88
F  Ozdok Trojan & Spambot 53, 80
G Pinch Trojan & Keylogger 80
H Rbot Botnet 80, 88, 6668
I Rustock Backdoor & Spambot 80 ... 65520
J  Sality Virus & Backdoor 80
K Sdbot Botnet 80, 88, 65146
L Srizbi Trojan & Spambot 43 ... 65520
M  Storm Botnet 1...63733
N  Swizzor Trojan & Spyware 80, 88
O  Tr.Downloader  Trojan & Downloader 80
P Tr.Spy Trojan & Spyware 80
Q  Vanbot Botnet 80 ... 8080
R Virut Virus & Backdoor 53 ...9011
S  ZeuS Trojan & Keylogger 80, 88
T  Zlob Trojan & Backdoor 80, 88

Table 1: Malware classes for empirical evaluation.
As the true “phoning home” mechanism is unknown
in most cases, all monitored ports are listed.

0.6 J

Detection rate

0.2 J

[ — Average detection |
1 N N

ABCDEGHIKLMNPQRST
Malware binaries

Figure 4: Detection performance of generated signa-
tures. The detection rates have been obtained with
one false positive in 1,000,000 benign network flows.

etary and encrypted protocols. For each class, we capture
a malware binary in the wild using techniques detailed in
Section 3.1. We consider a sample of two million network
flows (TCP connections and UDP packets) recorded over a
period of 24 hours at the university network as a pool of
normal traffic. To allow for efficient matching of signatures
in high-bandwidth traffic, we limit the length of payloads to
a maximum of 256 bytes. This restriction, however, is not
inherent to Botzilla, as our signature generation can operate
on payloads of arbitrary length.

Each captured malware binary is executed 10 times in the
sandnet using different network and host settings, and the
resulting network communication is automatically recorded.
To ensure a sound evaluation, we split the recorded malicious
and regular traffic into two distinct partitions, where the
first partition is used for signature generation and threshold
computation while the second is only applied for measuring
detection and false-positive rates.

Results for the offline application of Botzilla are presented
in Figure 4, which shows the detection rate for 17 of the 20



malware classes. On average, 94.5% of the “phoning home”
activity is correctly identified by the generated network sig-
natures; a perfect detection is attained for 10 classes. How-
ever, for 3 out of 20 malware classes (F, J, O), no signatures
have been generated by Botzilla due to the lack of suitable
tokens, hence no detection rate for the respective malware
class is shown. While this result may be seen as a weakness
of our approach, the rigorous selection of tokens is crucial
for enforcing low false-positive rates. The false-positive rate
achieved in this experiment is 0.0001%, as only a single net-
work flow out of the 1,000,000 benign flows is reported as a
false alarm. Similar results are obtained with a filtered set of
signatures. The filtering slightly decreases the detection rate
from 94.5% to 92.7%, whereas the false-positive rate remains
constant at 0.0001%. The number of generated signatures
is reduced by 23.5% from 17 to 13, which confirms the abil-
ity of the filtering mechanism to effectively prune redundant
signatures. Keeping the signature base small is crucial for
maintaining the performance of signature matching.

4.2 Generated Signatures

The presented detection performance demonstrates the
ability of Botzilla to accurately identify several malware
classes. To gain further insights into this process, we study
some generated signatures in more detail. In particular,
we examine the tokens and support values of three signa-
tures generated for the malware classes Hupigon, Banload
and Storm listed in Table 1.

tokens :
"GET a2965583/ip.txt HTTP/1.0\n\r
User-Agent: MYURL[...]" : 1.000

threshold : 1.00

Figure 5: Signature for the malware Hupigon. For
presentation longer tokens have been truncated.

As the first example, Figure 5 shows the signature gener-
ated for the malware class Hupigon. The signature reflects
the behavior of a typical HTTP bot and comprises a single
HTTP request, which is used to inform the attacker of a
newly infected host. The accurate selection of tokens in this
example yields a very concise signature, comprising the URI
“a2965583” and the unusual user-agent “MYURL” in a single
token string.

tokens :
"SER asaasa510\n\rPASS 3330881\n\rTYPE..." : 0.500
"220 ProFTPD 1.2.9 Server (ProFTPD) [1..." : 0.500

threshold : 1.00

Figure 6: Signature for the malware Banload. For
presentation longer tokens have been truncated.

Figure 6 presents the signature generated for the mal-
ware class Banload. The signature contains two tokens cor-
responding to malware communication using the F'TP proto-
col. The first token covers the initial FTP request of Banload
to login into its control server with the name “asaasa510” and
the password “3330881”, while the second token corresponds
to the respective response of the server. The support values

are equally distributed and realize a Boolean conjunction of
tokens, which is only triggered if both tokens match.

The third example of a generated signature is presented
in Figure 7 for the malware Storm. In contrast to the other
examples, Storm uses a proprietary communication protocol
involving an encryption scheme [see 9, 24]. Although such
encryption should generally impede the extraction of invari-
ant patterns, six discriminative strings have been extracted
from the network traffic. As a result, Storm is identified
with over 80% detection rate in Figure 4 despite the encryp-
tion of communication. We credit the discovered tokens to
invariants in the communication which are not truly con-
cealed by a simple encryption scheme, yet we were unable
to recover the unencrypted contents.

tokens :
ef bf bd 50 00 ef bf bd Oa ¢ 0.920
ef bf bd ef bf bd ef bf bd ef bf bd ef ... 0.545
ef bf bd 0d ef bf bd 0d ef bf bd 0d ef ... 0.339
40 ef bf bd 3c ef bf bd 50 00 ef bf bd Oc 1.000
40 ef bf bd 3c ef bf bd 50 00 ef bf bd 1b 0.679
40 ef bf bd 3c ef bf bd 50 00 ef bf bd ... 0.581

threshold : 1.00

Figure 7: Signature for the malware Storm. The
tokens are presented using sequences of hexadecimal
numbers. For presentation longer tokens have been
truncated.

4.3 Live Application

We conclude our evaluation with a live application at a
central gateway of a large university network. The applica-
tion at a high-speed link requires certain prerequisite and
technical issues to be addressed. First, we incorporate our
approach into the open-source flow monitor Vermont [13]
which is able to process raw packets up to 1 Gbit/s. We
again restrict the acquisition of payload data to the first 256
bytes of flows, whereby stream reassembly is kept to a min-
imum. Thorough reassembly is problematic in high-speed
network environments, hence our goal is to perform fast
aggregation with low memory impact. While the payload
aggregation for UDP packets is straightforward, the aggre-
gation of TCP packets is implemented using a lightweight
stream reassembly where sequence numbers are matched,
but sophisticated checks are omitted for the sake of perfor-
mance. Moreover, uni-directional flows are aggregated into
bi-directional flows so that signatures can be jointly matched
on the respective payloads. Finally, to allow for efficient sig-
nature matching we employ an implementation of a keyword
tree [7] similar to the Aho-Corasick algorithm regularly ap-
plied in intrusion detection systems [e.g. 18, 22].

For the live application we consider a second set of 43
malware binaries, which have been captured during a day
of May 2009 and correspond to currently active malware
strains. For each binary, a network signature is generated as
described in Section 4.1 and added to the signature matcher
of Vermont. The final system is then deployed to monitor
the Internet uplink of a university network, which consists
of over 50,000 hosts and features a high variety of differ-
ent traffic types. During the experiment, Botzilla and the
underlying Vermont are running on standard hardware (In-
tel Core 2 Quad CPU running at 2.8 GHz). Moreover, all



monitored network traces are anonymized to comply with
privacy regulations.

True positives during 4 days
167 | Infections with spyware HotLog.ru
18 | Downloads of malware binaries (zonetech.info)
29 | Communication with Russian Business Networks
5 | Infections with 7r.Downloader
Presumed false positives during 4 days
75 | False positives with token “rygames”
31 | False positives related to HTTP requests
29 | False positives related to IRC connections
160 | Miscellaneous false positives

Table 2: Alerts reported by Botzilla during a 4 day
application period.

Table 2 summarizes results obtained during a 4 day de-
ployment of Botzilla. A total of 514 alerts was reported
of which 219 correspond to real infections of malware in
the university network. In particular, 167 instances of spy-
ware and 18 downloads of malware binaries were detected
in the network traffic. Furthermore, the “phoning home”
of malware related to so-called Russian Business Networks
was correctly tracked in 29 cases. The other 295 alarms
are false positives and were induced by signatures that er-
roneously flag particular HTTP and IRC traffic as malware
communication. Overall, Botzilla yields a false-positive rate
of 0.00004%, corresponding to 295 false alarms in 840 million
flows, which is still remarkably low given that no manual re-
finement has been performed. For a comparative evaluation,
we also processed the network traffic with BotHunter [5].
As Botzilla is trained to detect the specific 43 malware bi-
naries, absolute detection rates of the two systems are not
directly comparable. Thus, we restrict our comparison to
hosts that triggered true-positive matches using Botzilla.
Of these matches, Bothunter flagged only 47% as malicious.
This result demonstrates that the signatures generated by
Botzilla are superior to hand-crafted signatures for the par-
ticular malware and provide a valuable alternative to current
horizontal and vertical correlation techniques.

Finally, we study the run-time performance of the under-
lying Vermont infrastructure using the generated network
signatures. In particular, we measure the run-time for pro-
cessing flows with all 43 generated signatures, where the
experiment is repeated for 30 times to remove outliers in
the measurements. All flows are previously aggregated for
the experiment, such that only the run-time performance of
signature matching is measured. Vermont is able to pro-
cess over 36,000 flows per second. Using statistics from our
network, this figure relates to 835,000 packets per second
and 4 Gbit/s link speed in average. Although we have not
considered larger sets of signatures, our results demonstrate
the excellent performance of Vermont, which may be further
improved using hardware acceleration [26].

S. DISCUSSION AND RELATED WORK

Detection of infected machines within a network is highly
important and, hence, it has attracted a significant amount
of research in the past. Closely related to our work are bot-
net detection approaches like BotHunter [5], BotSniffer [6],
BotMiner [4] and TAMD [21]. These tools try to find ei-

ther horizontal or vertical correlations in network commu-
nication. A horizontal correlation implies that several hosts
behave similarly at the network level: this indicates infected
machines under a common control infrastructure which re-
spond to a given command. While this is a generic approach
to detect compromised hosts, it may fail if only a small num-
ber of machines is infected or if the attacker sends different
commands to machines within a single network. Further-
more, these approaches need to study communication for a
longer time to find correlations, whereas our approach tries
to detect the actual “phoning home” mechanism, which pro-
vides the advantage that we can detect infected hosts early
and prior to mass-infections.

The second approach, namely vertical correlation, tries
to detect individual machines that behave like infected ma-
chines, for example by detecting typical network signatures
of botnet communication. We follow this line of research
and show how such signatures can be generated from mon-
itored malware traffic. In contrast to previous work in this
area, we automatically generate these signatures and do not
rely on human intervention. Furthermore, our approach
does not depend on examining full network payloads. In
our experiments, we limit the analysis to the first bytes of
network flows and still attain sufficient detection accuracy.
This allows for scalable detection that can monitor an order
of magnitude more machines for infections in comparison to
previous work.

Clearly, the simplest technique to hide communication
from automatic signature generation is the encryption of
contents. While Botzilla cannot overcome this problem in
general, two issues related to practical application are note-
worthy. First, the absence of invariant patterns to be caused
by encryption would result in empty signatures, which would
allow to at least identify encrypted communication. The
mere presence of unusual encryption may already be indica-
tive of an infection and reveal information about a remote
attacker. Second, simple or poorly implemented encryption
methods may not necessarily eliminate, but rather only ob-
fuscate invariance. In such cases, malware communication
can still be detected, for example as in the case of Storm.

Methods for automatic signature generation are known to
suffer from several evasion techniques [17, 19]. Botzilla is less
affected by such threats, as its application generally differs
from the regular intrusion detection scenarios. The network
traces used for signature generation are obtained from re-
peated executions of malware in a controlled environment.
By randomly changing parameters of this environment, such
as the time, it is particularly hard for an attacker to decide
when to inject fake invariants into the communication, as the
environment and time is controlled by signature generating
process. As a result, the attacker is limited to indiscriminate
evasion techniques such as inclusion of random chaff when
contacting the remote control host. Effectiveness of such at-
tacks has been shown to be significantly lower than that of
targeted attacks. Since our malware execution is not car-
ried in a virtualized environment, detection of virtualization
is not a promising attack option either.

6. CONCLUSIONS

In this contribution, we have presented Botzilla, a method
for automatic detection of typical communication patterns
used in malicious software. The method provides a sim-
ple yet practical tool for automatic network-level analysis



and protection. In particular, the use of signatures allows
for efficient realizations using common network monitoring
and intrusion detection techniques, such that Botzilla can be
readily deployed in high-speed networks. Overall, the auto-
matic generation of signatures for novel malware provides
a timely mechanism for keeping abreast of the increasing
threat posed by malicious software

Botzilla has been evaluated in a large university network,
where it attains a detection rate over 94.5% with a low
amount of false alarms. In a practical applications over sev-
eral days, Botzilla automatically identified various instances
of malware infections in a university network, thus provid-
ing a valuable tool for security administrators at the network
site. While the approach underlying Botzilla addresses the
detection of communication as employed by today’s mal-
ware, our future research will consider “phoning home” tech-
niques likely to occur in next-generation malware, such as
covert channel and steganographic remote control.
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