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ABSTRACT
Machine learning has been increasingly adopted for automatic se-

curity vulnerability discovery in research and industry. The ability

to automatically identify and prioritize bugs in patches is crucial

to organizations seeking to defend against potential threats. Pre-

vious works, however only consider bug discovery on statement,

function or file level. How one would apply them to patches in

realistic scenarios remains unclear. This paper presents a novel

deep learning-based approach leveraging an interprocedural patch

graph representation and graph neural networks to analyze soft-

ware patches for identifying and locating potential security vulner-

abilities. We modify current state-of-the-art learning-based static

analyzers to be applicable to patches and show that our patch-

based vulnerability discovery method, a context and flow-sensitive

learning-based model, has a more than 50% increased detection

performance, is twice as robust against concept drift after model

deployment and is particularly better suited for analyzing large

patches. In comparison, other methods already lose their efficiency

when a patch touches more than five methods.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Computing methodologies→Machine learning.
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1 INTRODUCTION
A change to a program is typically accomplished through a patch,

providing feature updates or fixes for bugs and vulnerabilities [47].

With the increasing adoption of continuous integration (CI) and

continuous deployment (CD), the need to monitor and validate

patches for potential bugs has become substantial [33]. To maintain

a secure and reliable software development life-cycle, organiza-

tions must have a robust software quality assurance process in

place to identify and mitigate security risks before a patch reaches

production systems.
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The traditional approach to finding bugs in software relies on

manual code reviews and extensive testing. However, this approach

is time-consuming, resource-intensive, and prone to human error.

Static program analysis, on the other hand, supports developers to

identify potentially flawed code regions without actually running

the program. Unfortunately, such static application security test-

ings (SASTs) tools often report many false positive alerts, which

consequently requires expensive manual triage. The problem arises

from too general detection rules and the theoretical limits of static

analysis including bug and vulnerability detection [27]. In practice,

developing detection rules for SAST tools is an error-prone and

tedious task [30]. Hand-crafted rules are often incomplete or too

sensitive, resulting in unfavorable trade-offs between high false-

positive and false-negative rates. The detection deteriorates even

more when these rules are project-agnostic and intended to apply

to a large number of applications.

As a remedy, methods for learning-based vulnerability detection

have been proposed to automatically derive rules from historical

data [30, 35, 58]. Current machine learning (ML) models have been

shown to beat rule-based SAST tools with a much higher detection

rate while pertaining to a lower false-positive rate [14, 43, 57, 58].

However, the prevailing ML models focus exclusively on features in

local code regions, such as functions [58], statements [17] or slices

[29]. Moreover, these models are not context- or flow-sensitive, and

thus suffer from low generalizability and transferability in realistic

settings [11, 12, 32, 39].

With patches, the situation is even worse, as there is often little

time to test and validate them before they are released and it remains

unclear how a security expert would apply learning-based SAST

tools to commits, as a patch can potentially span over multiple

disjoint modules, functions, and classes. Since patches are the only

atomic unit defining the evolution of software, it makes sense to

adapt existing methods or develop novel techniques that infer bugs

in patches rather than identifying bugs on more fine-granular levels.

Yin et al. [56] state that up to 24% of patches introduce new bugs,

moreover, with open-source software, most patch developers are

not even familiar with the entire code base.

The main research question addressed in this work is how to

effectively identify and locate bugs in patches. As current learning-

based analyzers do not consider patches, we can demonstrate that

their detection performance is poor. Thus, we present a novel patch-

based vulnerability discovery (PAVUDI) approach. We combine

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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graph neural networks with traditional taint analysis to identify

and locate bugs in patches considering the entire application. We

first formalize a new graph representation that allows security

practitioners to analyze interprocedural data and control flow from

potentially attacker-controlled sources to software-critical regions.

Such a single graph captures the impact of a given patch on the

system’s security posture. Secondly, we design a learning model

specifically for this graph representation to automatically infer

vulnerable or flawed paths within a patch.

To empirically validate the effectiveness of our approach, we

conduct a comprehensive evaluation of the proposed method on

a dataset of security patches. We show that PAVUDI outperforms

state-of-the-art methods under real-world conditions. Furthermore,

we find that current approaches suffer from concept drift, that is,

they lose their initial detection capabilities over time. PAVUDI is less

affected by this drift, providing a more stable detection performance

over time.

In summary, we make the following contributions in this work:

(1) Interprocedural code representation.We introduce and formal-

ize a new graph representation of code for finding security

vulnerabilities. The graph is context- and flow-aware and

provides security-relevant information especially for bug

discovery in patches.

(2) Explainable graph learning model. We implement a novel

model architecture that is well suited for our graph represen-

tation and provides explainable results using causal structure

learning.

(3) Extensive empirical evaluation.We compare PAVUDI against

several different state-of-the-art vulnerability discoverymod-

els and implement several detection strategies to apply these

models to patches.

(4) Real-world findings.We test PAVUDI in realistic scenarios by

detecting previously unknown bugs in open-source software.

More specifically, we apply our model to two popular C li-

braries and find five bugs in their most recent 100 commits.

The rest of this paper is structured as follows: We begin with

an introduction to vulnerabilities and graph representations in

Section 2, then we detail our problem setting in Section 3 and

present our methodology in Section 4. In Section 6, we discuss our

empirical evaluation and end with related work and conclusions in

Section 7 and Section 8, respectively.

2 VULNERABILITIES IN PATCHES
Before presenting our approach to detect vulnerabilities in patches,

let us first introduce the basic concepts of static non-learning and

learning-based vulnerability discovery methods.

2.1 Vulnerability Discovery
To begin, we define the task of discovering vulnerabilities in a pro-

gram. We aim to derive a single score that indicates the likelihood

of a program being vulnerable based on a particular representation

of it. This is expressed in Definition 1, which defines a decision

function that takes a piece of code and maps it to the probability of

it being vulnerable. Note, that this definition does not differentiate

between 𝑥 being a function, statement or patch.

Definition 1. A method for static vulnerability discovery is a

decision function 𝑓 : 𝑥 ↦→ 𝑃 (vulnerable | 𝑥) that maps a piece of code

𝑥 to its probability of being vulnerable [20].

Classic rule-based SAST tools can be described directly as a func-

tion 𝑓 predicting vulnerabilities, by for instance, matching function

calls against known patterns or applying taint style analysis by

tracking the flow of user-provided values, checking buffer bounds,

detecting undefined behavior and more. Learning-based methods

for vulnerability discovery, on the other hand, build on a function

𝑓 = 𝑓𝜃 parameterized by model weights 𝜃 that are obtained by

training on a dataset of vulnerable and non-vulnerable code [23].

Compared to classic static analysis tools, learning-based approaches

do not have a fixed rule set and thus can adapt to characteristics of

different vulnerabilities in the training data. The primary differences

among these approaches lie in the input program representation

and the learning model, for instance, how the function depends on

the model weights.

2.2 Vulnerabilities and Patches
There are several ways vulnerabilities can slip into program code

during software development, ranging from a single patch to a series

of complex and intertwined changes to a program. While there are

approaches to trace a discovered bug back to the inducing changes,

the other direction, namely identifying all commits sufficient for

spotting an unknown vulnerability, is a hard problem in the general

case. As a remedy, we focus in this work on vulnerabilities that are

linked to one specific patch.

In particular, we consider a patch as vulnerability-inducing if

its code changes either directly introduce the defect or are in close

proximity to an existing one, so that vulnerable data passes through

code changes as defined later in Definition 7. An example of such

a patch is the heartbeat commit introducing a buffer-overread in

CVE-2014-0160, as shown in Figure 1. Note that even though we

restrict our scope to single vulnerability-inducing patches, their

complexity can still be significant, covering dozens of disconnected

regions across an entire code base.

2.3 Graph Representations
Since programs can be modeled as directed graphs [2, 6, 53], re-

cent approaches make use of graph representations [14, 43, 58] for

source code instead of flat token sequences [30, 35]. We refer to the

resulting representation as a code graph and denote the underlying

directed graphs as𝐺 = 𝐺 (𝑉 , 𝐸) with vertices𝑉 and edges 𝐸 ⊆ 𝑉 ×𝑉 .

Moreover, the nodes and edges are attributed, that is, elements of

𝑉 or 𝐸 are assigned values in a feature space.

However, different code graphs capture different syntactic and

semantic features. Recent works, for instance, rely only on syntactic

features for neural code comprehension using the abstract syntax

tree (AST) [2]. This is a tree representing the syntactic structure of

source code.

Definition 2. The abstract syntax tree (AST) of a function 𝑓 is

the result of parsing its source such that the leaf nodes in the resulting

tree 𝐺𝐴 = 𝐺 (𝑉𝐴, 𝐸𝐴) are the literals and the edges 𝐸𝐴 describe the

composition of syntactic elements [1].
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The semantic attributes of a function can be captured in flow

graphs for instance with the flow of control or the flow in informa-

tion defined in Definition 3.

Definition 3. The control flow graph (CFG) within a function 𝑓 is

𝐺𝐶 = 𝐺 (𝑉𝐶 , 𝐸𝐶 ) with the nodes𝑉𝐶 ⊂ 𝑉𝐴 being statements, and where

the directed edges 𝐸𝐶 describe the execution order of the statements

𝑉𝐶 ⊂ 𝑉𝐴 [53]. The data flow graph (DFG) within a function 𝑓 is

𝐺𝐷 = 𝐺 (𝑉𝐷 , 𝐸𝐷 ) with the nodes𝑉𝐷 ⊂ 𝑉𝐴 being variable assignments

and references, and where the directed edges 𝐸𝐷 describe read or write

access from or respectively to a variable [9].

These graph representations allow us to reason about the order

of the executed statements and the flow of information between

variables. An analysis using these properties is considered flow-

sensitive [32]. Finally, a call graph connects function call-sites with

the function definitions as defined in Definition 4.

Definition 4. The call graph (CG) within a program is defined

as 𝐺𝐶𝐺 = 𝐺 (𝑉𝐶𝐺 , 𝐸𝐶𝐺 ) where the nodes 𝑉𝐶𝐺 ⊂ 𝑉𝐴 being function

call-sites and definitions, while the edges 𝐸𝐶𝐺 connect the caller with

the respective function definition.

An analysis using the call context of a program is considered

context-sensitive [32]. Code graphs capture syntactic and seman-

tic relationships between statements and expressions in programs.

Based on these classical representations, combined graphs have

been developed for vulnerability discovery. A popular one is the

code property graph (CPG) by Yamaguchi et al. [53], which is a com-

bination of the AST, CFG and program dependence graph. Other

approaches use different combinations, for instance, combining

the AST with the CFG and the DFG [9], called code composite

graph (CCG) as defined in Definition 5.

Definition 5. The CCG is a disconnected graph 𝐺𝐶𝐶𝐺 for a pro-

gram 𝑃 = {𝑓1, 𝑓2, .., 𝑓𝑛} with 𝑉 =
⋃𝑛

𝑖=1𝑉
𝑖
𝐴
and 𝐸 = 𝐸𝐴 ∪ 𝐸𝐷 ∪ 𝐸𝐶

combining the AST with the semantic information from the CFG and

DFG.

The components of a CCG are easily obtained during compila-

tion, and capture syntactic features and information flow, which

fits neatly into the definition of taint-style analysis, which we will

revisit in Section 4 [54].

2.4 Graph Representation Learning
With the recent success of graph-based program representations,

research has started to focus on graph convolutional networks

(GCNs) [58]. These networks are a class of deep learning models

realizing a function 𝑓 : 𝐺 (𝑉 , 𝐸) ↦→ 𝑦 ∈ R𝑑 that can be used for the

classification of graph-structured data [36].

GCNs can be viewed as a generalization of convolutional neural

networks (CNNs), just as an image can be viewed as a regular grid

graph where each pixel denotes a node in the graph connected by

edges to its neighboring pixels [51]. A graph convolutional net-

work needs two mandatory input parameters, that is, an initial

feature vector 𝑋 ∈ R𝑁×𝐹
, with 𝑁 being the number of nodes in

the graph and 𝐹 the number of features per node, and the topol-

ogy commonly described by the adjacency matrix 𝐴 ∈ [0, 1]𝑁×𝑁
.

The most popular GCN types belong to so-called message passing

networks (MPNs) where the prediction function is computed by

iteratively aggregating and updating information from neighboring

nodes. One of the simplest MPNs is the one defined by Kipf and

Welling [26]:

ℎ (𝑙 ) = 𝜎 (𝐴ℎ (𝑙−1)𝑊 (𝑙−1) ) (1)

with ℎ0 = 𝑋 . Here, the intermediate representations are linearly

projected and sum-wise aggregated according to the normalized ad-

jacency matrix𝐴with self-loops followed by a non-linear activation

function. These GCNs can be stacked to learn filters with respect to

larger neighborhoods. Other GCN layers use different aggregation

and update mechanisms, for instance, instead of an multilayer per-

ceptron (MLP), gated graph neural networks (GGNNs) use gated

recurrent unit (GRU) cells to update the hidden state of nodes [28],

while graph attention network (GAT) layers use attention mecha-

nisms [42]. We refer the reader to the overview article by Wu et al.

[51] for further details.

Because of the fitting premise of GCNs, they have been widely

adopted for representation learning on code graphs. The graph-

based approaches in recent literature outperform classical SAST

tools and older sequential learningmodels such as VulDeepecker [30]

or Draper [35]. Graph learning-based approaches like Devign [58]

and ReVeal [11] can be considered state-of-the-art and provide

strong results in their respective publications.

3 PROBLEM SETTING
Current research on learning-based static code analysis focuses on

local code regions, for instance, functions [11, 58], slices [29], or

small code gadgets [14]. However, software development revolves

around changes that can span multiple files and functions. Con-

current versioning systems like Git allow software developers to

track changes that may contain bug fixes or feature enhancements

commonly denoted as patch:

Definition 6. A patch (commit) [𝑃 ′⇛ 𝑃] is a transition from

one program 𝑃 ′ to another 𝑃 . It consists of changed code lines and

files commonly denoted as hunk. A patch is often associated with a

Git commit and its unique identifier [47].

Besides introducing new features or fixing bugs, a patch also po-

tentially adds new bugs [56] which we want to detect. The decision

function from Definition 1 does not specify how to apply existing

methods to patches. A naive approach would be to glue together

all snippets changed by a patch before applying a decision function

that operates on function or statement level.

However, problems arise due to the difficulty in identifying and

locating all possible changes within a commit that potentially in-

troduces bugs. Consider the heartbleed bug (CVE-2014-0160) in

the OpenSSL C library. The bug was introduced due to a feature

change adding TLS heartbeats three years prior to the discovery

of the actual security vulnerability. The commit
1
touches twelve

different C files and five header files in two different packages. A

static analyzer would need to check all changed functions in all

changed files to find the defect causing the heartbleed vulnerability

shown in Figure 1.

We can see that memcpy copies a buffer with the size obtained by

the client. If the client proposes a buffer length larger than the target

1
https://github.com/openssl/openssl/commit/481750
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1 if (hbtype == TLS1_HB_REQUEST)
2 {
3 unsigned char *buffer, *bp;
4 int r;
5

6 /* Allocate memory for the response, size is 1 byte
7 * message type, plus 2 bytes payload length, plus
8 * payload, plus padding
9 */
10 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
11 bp = buffer;
12

13 /* Enter response type, length and copy payload */
14 *bp++ = TLS1_HB_RESPONSE;
15 s2n(payload, bp);
16 memcpy(bp, pl, payload);

Figure 1: Buffer over-read in dtls1_process_heartbeat().

buffer, it effectively triggers a heap-based buffer over-read. Finding

this bug among all the changed files seems like finding the needle

in the haystack. A static analyzer would need to identify memcpy

as a critical code statement, consider payload user-controlled and

detect that there is no sanitization in-between.

We conclude that locating bugs in patches naturally comes with

several problems that need to be addressed:

(1) Context-sensitive changes. Patches may only touch certain

functions and modules but need to be analyzed in the sur-

rounding context. A bug typically spans over multiple mod-

ules [57], that may be associated with a patch but do not

have to be directly affected by it.

(2) Non-coherent changes. A patch may not correspond to a sin-

gle feature change but potentially touch multiple modules

that do not necessarily have to be associated with each other.

Applying a SAST on all changed components may signifi-

cantly increase the reported false positive alerts.

(3) Evolution of software. The learning-based discovery of vulner-

abilities has already been addressed in research [11, 47, 58],

however, finding a patch that introduces a bug is non-trivial,

as a program may undergo several changes before a bug

actually manifests. In addition, the feature representation of

the programmay change over time, causing the performance

of a learning-based analyzer to degrade over time as well.

4 METHODOLOGY
PAVUDI is inspired by classic taint analysis, a dynamic program

analysis approach where particular statements or expressions are

tainted and monitored at run-time [37]. This analysis allows se-

curity practitioners to identify, for instance, potential attacker-

controlled sources flowing into sensitive program regions. Yam-

aguchi et al. [53] define an over-approximate static approach by

tainting program parts and propagating tainted values statically

along the control and data flow. We extend their original formal

definition to allow us to statically find vulnerabilities in patches

per Definition 7.

Definition 7. a) A taint-style analysis for vulnerable patch detec-

tion is a 4-tuple (𝑉source,𝑉sink,𝑉san,𝑉edit) consisting of the nodes in
the CCG of a program 𝑃 denoting the taint source, sink and sanitizer

nodes as depicted from 𝑉A [53] as well as the nodes corresponding to

code that is changed or newly created in a patch [𝑃 ′⇛𝑃].

b) We say the patch [𝑃 ′⇛𝑃] contains a bug if there exists a vulnera-
ble data or control flow between any 𝑣0 ∈ 𝑉source and 𝑣1 ∈ 𝑉sink with

the constraint of not reaching any defined sanitizer but intersecting

with at least one node from 𝑉edit.

4.1 Overview
To overcome the issues described in Section 3, our method is com-

prised of a new graph representation, called taint graphs which

considers the context of a patch, a value-set analysis and an ex-

plainable graph neural network (GNN) that learns to infer detection

rules on this particular representation in a taint-style fashion as

described in Definition 7.

Graph representation. We define a new interprocedural patch

graph representation. Beba and Karlsen [5] have shown that taint

information significantly reduces false positives for rule-based static

analyzers, hence, we similarly argue that this graph representation

yields more valuable context to learning-based analyzers. In con-

trast to current discovery models, interprocedural graph represen-

tation is arguably more beneficial, since it enables us to propagate

taint information within the entire program, which is impossible

with a function, local slice or file-level graph.

Value-set analysis. As another improvement over recent discov-

ery models, we calculate a value-set analysis to track variable

domains in the graphs. This assists in reasoning about potential

bounds and sanitizations. More specifically, whether or not the

value of a user-controlled variable or buffer length is bounded ben-

eficially affects the model’s decision.

Causal GNN model. Finally, we use graph isomorphism network

(GIN) layers to train an inductive model to infer detection rules

applied to taint graphs. Ourmodel is especially suited for processing

long input graphs by its skip connections and attention mechanism.

The attentionweights from the latter can be interpreted as relevance

scores per node to achieve a fine-granular localization of bugs.

4.2 Representation
To obtain a graph representation that is appropriate for vulnerability

discovery in patches, we slice from taint graphs that are an extension

to CCGs. We can calculate them in four steps:

(1) Insert call edges

(2) Insert interprocedural data flow

(3) Perform a value-set analysis

(4) Create security-relevant slices

(1) Insert call edges. A CCG is an intraprocedural disconnected

graph 𝐺𝐶𝐶𝐺 for a program 𝑃 . Each function within 𝑃 has its own

CCG. We can connect each of them by adding call graph edges.

More concretely, we connect call-sites with function definitions per

Definition 4. We eventually end up with a single connected graph

for 𝑃 with 𝑉 =
𝑛⋃
𝑖
𝑉 𝑖
𝐴
and 𝐸 = 𝐸𝐴 ∪ 𝐸𝐷 ∪ 𝐸𝐶 ∪ 𝐸𝐶𝐺 . Although the

CCG now encompasses an over-approximate global semantic of

the program 𝑃 with a single connected graph, it is still hard to track

interprocedural data and control flow.
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(2) Insert interprocedural data flow. The CG provides some

intuition about the relation between functions during execution.

Yet, to keep track of user-controlled variables, it is necessary to

provide a more fine-grained view of the interprocedural data flow.

Consider a function call 𝑣1 → 𝑣2 with (𝑣1, 𝑣2) ∈ 𝐸𝐶𝐺 . Since 𝑣1 is a

call statement, we can associate its accompanying argument nodes,

while the same applies to the function parameters represented in

the function signature of the callee 𝑣2. We sort the argument nodes

by their appearance in the function definition and connect them

pairwise yielding 𝐸𝐼𝐷𝐹𝐺 . During the static analysis, it is hard to

infer whether a variable passed by reference may be written to or

only read from, thus, we model interprocedural data flow graph

(IDFG) edges between pointers as a bidirectional relationship. This

step leaves us with an IDFG graph formally defined in Definition 8.

Definition 8. The interprocedural data-flow graph (IDFG) is

defined as 𝐺𝐼𝐷𝐹𝐺 where 𝑉𝐼𝐷𝐹𝐺 ⊆
𝑛⋃
𝑖=1

𝑉 𝑖
𝐷

with 𝐸𝐼𝐷𝐹𝐺 connecting

parameters in the function call to their respective arguments in the

function definition.

(3) Perform a value-set analysis. Given 𝐺𝐷 we can select any

variable assignment 𝑣𝑒 ∈ 𝑉𝐷 and find (𝑣𝑠 , 𝑣𝑒 ) ∈ 𝐸𝐷 where 𝑣𝑒 reads

from 𝑣𝑠 . If 𝑣𝑠 is a constant and 𝑣𝑒 is a Boolean, Float or Integer

operation, we can evaluate 𝑣𝑒 . If 𝑣𝑠 is not a constant, we can find

(𝑣, 𝑣𝑠 ) ∈ 𝐸𝐷 and repeat. This eventually boils down to constant

propagation and folding. If we are able to evaluate 𝑣𝑒 , we attach

the evaluated value to the node. Otherwise, if the operation can not

be evaluated because, for instance, one data flow dependent 𝑣𝑑 of

𝑣𝑒 relies on I/O input or external API calls, we annotate 𝑣𝑒 with 𝑣𝑑 .

Lastly as described by Wegman and Zadeck [50], we find all

expressions within surrounding conditional blocks that may act

as invariants. If within this conditional block, we run into a vari-

able that appears in a conditional of the form <var> <comparison>

<expression>, we annotate its bounds with its value if it could be

evaluated in the previous step. As an example, in Figure 2, we can

assert that len has a lower bound of 10 in the entire conditional

block after line 4.

We can formalize this by attaching a lower-bound domain to

every reference node 𝑣 ∈ 𝑉𝐷 defined as a four-tuple semi lattice

(R, ≤,⊥,⊓𝑙 ) and an upper-bound domain (R, ≥,⊤,⊓𝑢 ).⊤ and⊥ de-

note unbounded, that is, the variable has no upper or lower bound

respectively, ⊓𝑢 is the least upper bound defined as ⊓𝑢 : (𝑘1, 𝑘2) →
min(𝑘1, 𝑘2) and ⊓𝑙 , consequently, is the greatest lower bound de-

fined as ⊓𝑙 : (𝑘1, 𝑘2) → max(𝑘1, 𝑘2). Both are used as transfer func-

tions at the control flow join points [3].

(4) Create security-relevant slices. At this point, we have a

program 𝑃 represented by an interprocedural CCG. As a first step

towards the definition of taint graphs, we define taint paths. For

this, we select taint sources 𝑉source ⊂ 𝑉 providing user input and

taint sinks 𝑉sink ⊂ 𝑉 denoting critical code regions and the subset

𝑉edit ⊂ 𝑉 of all nodes that have been edited in a specific patch.

Definition 9. A single taint path 𝑝 of a patch [𝑃 ′ ⇛ 𝑃] is an
oriented path with vertices 𝑣0, . . . , 𝑣𝑏 , . . . 𝑣𝑒 starting at 𝑣0 ∈ 𝑉source,

passing through 𝑣𝑏 ∈ 𝑉edit and ending in 𝑣𝑒 ∈ 𝑉sink where all the

edges are in 𝐸𝐼𝐷𝐹𝐺 , 𝐸𝐷𝐹𝐺 or 𝐸𝐶𝐹𝐺 .

To obtain taint paths we perform forward slicing from 𝑉edit to

𝑉sink following any IDFG, DFG or CFG while neglecting the AST

and CG edges. This leaves us with a set of paths that describe the

changed spots within a patch potentially flowing into critical sinks.

Likewise, we perform backward slices from 𝑉edit to 𝑉source. Com-

bining both sets of slices leaves us with a set of paths describing

all flows starting with user-defined inputs intersecting the patched

locations and reaching the critical sinks. To provide a holistic view

of a patch, we arrive at the taint graph, as defined in Definition 10,

by combining all taint paths and gluing them together at their patch

intersections 𝑉edit. It is trivial to see, that this graph representa-

tion neatly fits into the definition of taint-style vulnerable patch

detection from Definition 7.

Definition 10. A taint graph (TG) of a patch [𝑃 ′⇛𝑃] is defined
as 𝐺𝑇𝐺 joining its taint paths {𝑝1, 𝑝2, . . . , 𝑝𝑘 } at their common AST

nodes, starting from𝑉source flowing through𝑉edit and reaching𝑉sink.

Originally, the term “taint graph” has been frequently used in

malware analysis, where information collected by malicious ap-

plications is tracked to analyze how it flows through processes

and files [55]. In our case, we are interested in how user-provided

data flows through a patch and whether they may reach critical

program sections. The definition of 𝑉source and 𝑉sink is specific to

the intended use and can be set appropriately. Furthermore, the

number of paths in 𝐺𝑇𝐺 might become exponentially large, hence

we suggest sub-sampling 𝑘 paths at random.

4.3 Discovery
Let us consider the vulnerability in Figure 2 for CVE-2015-7497

which was introduced 12 years before it was publicly disclosed
2
.

plen is a user-controlled variable that could trigger a buffer under-

flow in name when provided with an integer larger than len.

1 ...
2 value = *name;
3 value <<= 5;
4 if (len > 10) {
5 value += name[len - (plen + 1 + 1)];
6 ...

Figure 2: Buffer underflow in Libxml2.

The corresponding taint graph with 𝑘 = 4 is depicted in Figure 3.

For visualization purposes, we have omitted irrelevant node and

edge labels and shortened the remaining node labels. We can see

that four possible input sources flow into the array access to name.

The common joint AST node, reached by each input source node

happens to be a function call to XMLDictLookUp(). The critical node

in this example is an array index calculation highlighted by PAVUDI.

Representation Learning. For a taint graph to be applicable for GNNs,
we represent the textual code that is attached to every AST node

using Word2Vec on each token and eventually take the average

similar to recent works [11, 58]. We then train a causal graph iso-

morphism network (CGIN) [40] to infer bugs in patches using our

2
https://github.com/GNOME/libxml2/commit/2fdbd3
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pathvar

name[len - (plen+2)]

read(fd, (char *) databuf, sbuf.st_size)

fopen(filename, r)

fread(buf, 1, len, f)

Figure 3: The 𝐺𝑇𝐺 with 𝑘 = 4 for a Libxml2 buffer-underflow.
Red denotes the relevant node according to PAVUDI.

novel graph representation. The GIN model performs state-of-the-

art while relying on a simple update and aggregation mechanism

similar to the GCN in Equation (1):

ℎ (𝑙 ) =𝑊 (𝑙−1)
(
(𝐴 + (1 + 𝜖) × 𝐼 ) × relu(ℎ (𝑙−1) )

)
(2)

Since, compared to classic code graphs, taint graphs are poten-

tially longer and have a smaller average degree, we implement

several design choices that help to pertain important information

over large distances. We set 𝜖 in Equation (2) as a trainable pa-

rameter, which is particularly useful in conjunction with GINs to

reduce smoothing out information from distant nodes. Further-

more, we use skip connections between the layers to help relevant

information propagate across the topology.

After three graph encoding layers, we use two MLPs to calculate

a relevance score for nodes and edges. For any node 𝑣𝑖 ∈ 𝑉 we

calculate their node attention as depicted in Equation (3) and for

any pair of nodes (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 their edge attention as depicted in

Equation (4) respectively. Furthermore, we halve the output space

of the MLPs to perform a latent space disentanglement, where the

first half will later be optimized to contain only the nodes causal

for our task and the second half will be trained to only contain the

trivial part of the graph which can be considered noise.

𝑎𝑐𝑖 , 𝑎
𝑡
𝑖 = 𝜎 (MLPNode (ℎ𝑖 )) (3)

𝑏𝑐𝑖 𝑗 , 𝑏
𝑡
𝑖 𝑗 = 𝜎 (MLPEdge (ℎ𝑖 | |ℎ 𝑗 )) (4)

A mean readout layer is applied last as a pooling strategy fol-

lowed by a final MLP with softmax activation as the prediction head

returning either vulnerable or clean. Using the attention scores

we can calculate attention masks𝑀𝑥 , 𝑀𝑥 , 𝑀𝑎, 𝑀𝑎 respectively for

the causal and trivial features, and causal and trivial edges. We

apply these masks to the adjacency matrix and feature matrix of

the taint graph yielding G𝑐
and G𝑡

for the causal and trivial sub-

graphs respectively. The causal taint graph can be used to explain

the prediction and find the cause of a vulnerability.

To train the model in a supervised fashion we first apply a tradi-

tional NLL-loss L𝑠𝑢𝑝 to our ground truth and the latent represen-

tation of the causal graph ℎ𝐺𝑐
as depicted in Equation (5).

Lsup = − 1

|D|
∑︁
G∈D

y⊤G log

(
𝜎 (hG𝑐 )

)
(5)

Then we take the representation of the trivial subgraph ℎG𝑡 and

optimize the model to separate trivial and causal features by fit-

ting the classifier with the trivial graph to be close to a uniform

distribution using the Kullback-Leibler divergence (KL):

L
unif

=
1

|D|
∑︁
G∈D

KL

(
y
unif

, 𝜎 (hG𝑡 )
)

(6)

Ganz et al. [19] observe that common explanation methods put

high relevance scores to features that stem from artifacts in the

dataset. To reduce such bias taking effect in our future model inter-

pretation, Sui et al. [40] suggest applying a backdoor adjustment

to take care of any confounding variable. This can be achieved by

conditioning the causal graph per sample with all possible trivial

graphs G𝑡
with 𝑡 ∈ T obtained during training. This stabilizes train-

ing and helps reduce the influence of noise and spurious correlated

features in the taint graph as defined in Equation (7).

Lcaus = − 1

|D| · |T |
∑︁
G∈D

∑︁
𝑡 ∈T

y⊤G log

(
𝜎
(
hG𝑐 + hG𝑡

) )
(7)

After optimizing the model by minimizing Lsup +L
unif

+Lcaus

we obtain a GNN that is able to process potentially long taint graphs.

We can use the causal part of the graph 𝐺𝑐
that was relevant to

the model to classify the patch vulnerable and to localize the bug.

Even more concretely using 𝑎𝑐
𝑖
from Equation (3) we can rank the

most important causal nodes relevant for this classification, as the

attention score can be directly interpreted as relevance score [36]

e.g. by calculating the top-1 important node:

max

𝑣𝑖 ∈𝑉
𝑎𝑐𝑖

4.3.1 Data Labeling. In order for a ML model to learn whether

a patch potentially introduces new bugs, we would need to have

a dataset with commits that originally add bugs to the code base,

however, such a dataset is non-existent and not trivial to create,

since, for example, a bug may need several commits until it man-

ifests itself. Instead, current vulnerability datasets only contain

commits that are known to fix bugs. Per commit, we can check

out a software project and sample taint graphs with a pre-defined

maximum length. We support the decision with a study from Calder

et al. [8] stating that most C and C++ open-source projects have a

maximum call-stack depth of 15. For each patch commit we mark

the changed files and lines and move back in time to find commits

prior to the patch touching the same lines in the same file. Partic-

ularly, for any commit including the patch, we extract its TG and

label it vulnerable if it touches the same file and lines as the patch

and label it clean otherwise. This leaves us with three different

types of TGs: Randomly selected clean graphs, vulnerable graphs

that touch pre-fixed code locations, and clean graphs patching a

bug. We will publish our extraction tool for subsequent research
3
.

3
https://github.com/SAP-samples/security-research-taintgraphs/tree/main/PAVUDI
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In general, we can address the issues from Section 3, since the

program-aware context-sensitive taint graphs can be regarded as

a solution to the problem of (1) context-sensitive changes, since

we are using only tainted paths we can consider the problem (2)

non-coherent changes to be circumvented to some extent. Lastly,

extracting the commits from different time steps and only if they

are associated with a known bug addresses the issue (3) evolution

of software. However, using this approach, we can’t decide whether

a patch introduces a bug, but whether patched code contains a

bug. As long as we do not have a dataset with patches introducing

bugs, but only patches that fix bugs, we argue, that this is a good

compromise.

5 EVALUATION
In the following section, we first lay out our experimental setup

and then provide answers to the following questions:

RQ1 How do the individual components of PAVUDI contribute

to the detection capability?

RQ2 How do other strategies compare to PAVUDI?

RQ3 How does the size of a commit affect the performance?

RQ4 How does PAVUDI behave after training and deployment?

5.1 Experimental Setup
In this section, we present our experimental setup for the experi-

mental evaluation.

5.1.1 Datasets. We use the state-of-the-art datasets from Zhou

et al. [58] for comparison with related approaches. The datasets are

derived from the open-source projects FFmpeg, a video decoding

and encoding command line tool, and QEMU, a generic emulation

software. Zhou et al. [58] curate a list of security-related keywords
4

associated with security patches that are used to crawl the Github

repositories of both projects and find security-relevant commits.

This has the advantage over other datasets [e.g. 17] that they have a

large number of samples per project. They then proceed to extract

code samples from the bug-fixing commits. We, on the other hand,

use these fixing commits to extract clean taint graphs (at the time

of the commit) and vulnerable taint graphs (prior to the commit)

as outlined in Section 4.3.1. The FFmpeg project contains exactly

2558 vulnerable and 3037 clean or fixed taint graphs, while QEMU

is slightly smaller with 1006 clean and 928 vulnerable taint graphs.

We also assess PAVUDI’s performance on five smaller projects,

namely Libxml2, an XML parser, and Lrzip, a compression tool,

since they have already been targeted by program analysis research

[e.g. 7, 16, 20], cURL, a command line tool for HTTP requests,

and OpenSSL, a cryptographic library, since these pose security-

critical applications which have been exploited in the past and

finally TinyProxy, as a relatively new untested security-relevant

application.

5.1.2 Taint Graphs. Per commit, we sample at most 𝑘 = 1000 taint

paths with a maximum length of 𝑙 = 200. For each commit, we can

incrementally update the interprocedural CCG in a graph database

using only the changes per patch. We choose 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑉𝑠𝑖𝑛𝑘
similar to Pewny and Holz [34], by annotating libc functions that

4
https://sites.google.com/view/devign

are related to bugs or provide user input. We refer the reader to

the appendix for the complete list of tainted statements. Further-

more, we attach Boolean upper- and lower-bound information to

each variable reference and assignment to provide the model with

information on whether the value of the expression is bounded.

5.1.3 Baseline Models. There are several state-of-the-art meth-

ods for learning-based static vulnerability discovery. We compare

against three intraprocedural graph-learning-based models since

they also rely on graph representations. These models classify bugs

only on the function level.

Devign uses as its initial input graph the CPG enhanced with the

natural sequence graph connecting leaf nodes in their order of

evaluation [58]. The model consists of a six-step GGNN with a

one-dimensional CNN as pooling.

ReVeal is similar to Devign and uses an eight-step GGNN to

embed the graph structure in latent space [11]. However, they use

a simple max pooling. Their original input graph is the CPG and

they use a triplet loss for training.

BGNN4VD uses the bidirectional CCG instead of the CPG [9].

They use an eight-step GGNN just as ReVeal followed by a 1D

convolutional pooling and a final linear layer.

Due to the fact that all three only consider local functions, their

static analysis approach is not context-sensitive, however flow-

sensitive since they use data and control flow edges [39]. Thus,

as another set of baselines, we select two models that are able to

process bugs in a limited interprocedural context.

DeepWukong is a graph-based learning model [14]. Compared

to the other GNN-based approaches it uses pre-processed slices

around potentially critical code locations, for instance, array index-

ing arithmetics, pointer usages or library calls.

SysEVR is similar to DeepWukong, as it first finds locations poten-

tially containing bugs, for instance, pointer usages, arithmetic ex-

pressions, function calls, and array indexing [29]. However, instead

of using a graph representation, they stick to the token representa-

tion of the code extracted from the slicing operation on the CPG to

feed it into a bidirectional gated recurrent unit (BGRU).

DeepWukong and SySEVR extract syntactic vulnerability can-

didates in the source code used for positioning the slices. Their

slicing operation includes function calls within the function under

analysis. Both approaches are context-sensitive and flow-sensitive

since they either use flow graphs or a flow-sensitive slicing ap-

proach. Lastly, we compare PAVUDI’s performance against two

more popular approaches.

VUDDY [25] is a non-learning-based static analyzer that detects

bugs by comparing their function signatures against known CVEs

and NVDs.

VulDeePecker similarly to SySEVR uses a token-based representa-

tion of intraprocedural forward and backward slices over the CPG

[30]. It uses a BiLSTM for classification.

VUDDY is a non-learning-based analyzer that is not optimized

for the dataset and thus a suitable baseline representative for other

non-learning based SAST tools. VulDeePecker, a context-unaware

analyzer, is similar to SySEVR but does not incorporate any a priori
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information about the slicing locations. Furthermore, VUDDY is

neither context nor flow-sensitive.

5.1.4 Strategies. All baselines process code at different granularity,
but to the best of our knowledge, none of them has been previously

applied to patches. While some methods classify slices and others’

entire functions, it remains unclear how one would apply them to

patches. Thus, we aggregate their decisions to a single score per

patch using five different aggregation strategies as if we would

integrate them into a software quality assurance process:

Max is a strategy where simply the maximum value of all prediction

scores from slices or functions is taken.

Mean strategy averages over every prediction score from slices or

functions.

Probability is a strategy where the probability of the patch being

vulnerable depending on its 𝑘 components, is similar to calculating

a system’s failure probability.

𝑃 = 1 −
𝑘∏
𝑖=0

(1 − 𝑓 (𝑝𝑖 )) (8)

As denoted in Equation (8), for each vulnerable component, we

multiply the probability of the complement event yielding the prob-

ability that no component is vulnerable. Then we take the comple-

mentary event again and obtain the probability that at least one

component is flawed.

Isotonic Probability is similar to the probability strategy. Niculescu-

Mizil and Caruana [31] state that prediction scores fromMLmodels

can not be mapped to probabilities out-of-the-box. We use an iso-

tonic regressor to calibrate the predictions before calculating the

probability as in Equation (8).

Commit merges all changed code components within a patch

together and feeds them into the model if applicable, instead of

returning predictions per function.

The different strategies have different effects on the FPs and

TPs. If the vulnerable score for the only function in the patch gets

smoothed out with the Mean-Strategy, we have fewer TPs and

FPs. On the other hand, the Max-Strategy may be too sensitive

to functions being slightly above the threshold resulting in higher

FPs and TPs resulting in a lower precision but higher recall. Note

that VUDDY only returns CLEAN or VULNERABLE without any

confidence score. Hence, we can only apply strategy Commit and

Max. The slice-based approaches can not have merged components

as input hence we can not apply the Commit-Strategy to them.

5.1.5 Performance Metrics. To assess the performance of the dif-

ferent models we use several performance measurements that are

recommended for comparing ML models in security [4]. For the

comparison against other models and in the ablation study we

use the F1-Score, that is, the harmonic mean between precision

and recall. Furthermore, we use the area under receiver operating

characteristic curve (AUROC), particularly as a second measure-

ment for the evaluation against the baselines. For the concept drift

experiment, we choose the balanced accuracy, calculated as the

arithmetic mean between the sensitivity and specificity. We repeat

every experiment ten times and report the best score.

Table 1: Ablation study: F1-Scores measured for different
settings.

Dataset GIN GGNN GCN CGIN

FFmpeg+CutOff 0.42 ± 0.14 0.48 ± 0.08 0.50 ± 0.10 0.56 ± 0.05

QEMU+CutOff 0.51 ± 0.11 0.47 ± 0.08 0.50 ± 0.03 0.61 ± 0.22

FFmpeg+TG 0.89 ± 0.02 0.89 ± 0.01 0.85 ± 0.02 0.90 ± 0.02

QEMU+TG 0.84 ± 0.01 0.79 ± 0.03 0.79 ± 0.02 0.84 ± 0.01

FFmpeg+TG+Bounds 0.90 ± 0.03 0.89 ± 0.01 0.89 ± 0.02 0.91 ± 0.02
QEMU+TG+Bounds 0.84 ± 0.03 0.80 ± 0.03 0.80 ± 0.02 0.85 ± 0.21

5.1.6 Implementation Details. We implement PAVUDI on top of Py-

torch Geometric and Memgraph
5
for storing and transforming the

taint graphs. Furthermore, we use an AWS EC2 g4dn instance for ex-

tracting the taint graphs and for training. We use PyDriller and the

GitHub API for extracting patch information, such as for instance,

the commit date, the number of changed functions and methods.

We train every model including PAVUDI on the same dataset with

an identical 70/30 random split, except for the non-learning-based

static analyzer VUDDY. We use the hyperparameters from the re-

spective original publications or reference implementations for the

baselines. For PAVUDI we use an ADAM optimizer with a learning

rate of 0.0001 and for the Word2Vec node embedding we use a

vector of size 100 and a context window of size 3 [11].

5.2 Evaluation
We proceed to present our experimental results to provide answers

to our research questions.

How do the individual components of PAVUDI contribute to the de-
tection capability? We present our ablation study for our CGIN

model on taint graphs on the FFmpeg and QEMU datasets. We try

three other popular GNN architectures, namely GIN [52], GGNN

[28] and GCN [26]. Also, we evaluate the models without using the

bounds information from the value-set analysis. Finally, we slice

off a subgraph from the taint graphs, such that each graph only

captures the immediate data flow around the patch neglecting taint

information. In Table 1, we see that the cut-off taint graphs yield

worse performance, hence we argue that providing interprocedural

and taint information is crucial for classifying vulnerable patches.

GCN is the worst architecture, while GGNN is very close to GIN.

However, CGIN provides the best F1-Scores.

Table 2: F1-Score for dataset cross-evaluation.

Testset Trainset

FFmpeg QEMU FFmpeg+QEMU

FFmpeg 91.1 ± 1.7% 34.0 ± 1.4% N/A

QEMU 41.3 ± 1.1% 82.9 ± 2.7% N/A

Libxml2 39.6 ± 1.8% 58.0 ± 1.2% 57.0 ± 1.6%

cURL 48.5 ± 0.3% 22.2 ± 2.2% 14.0 ± 1.2%

OpenSSL 60.9 ± 1.43% 83.4 ± 1.6% 54.0 ± 2.4%

Using the backdoor adjustment from Sui et al. [40] our results

align with their observation, that we can even reduce the out-of-

distribution (OOD) problem. This can be seen in Table 2 where

PAVUDI achieves noticeable detection performance measured by

5
https://memgraph.com/



Patch-based Vulnerability Discovery ACSAC 2023, December, 2023,

FFmpeg

0.00 0.25 0.50 0.75 1.00

F1-Score

0.0

0.2

0.4

0.6

0.8

1.0

R
O
C
A
U
C

QEMU

0.00 0.25 0.50 0.75 1.00

F1-Score

0.0

0.2

0.4

0.6

0.8

1.0

R
O
C
A
U
C

PAVUDI

DeepWukong Max

DeepWukong Proba

DeepWukong Mean

DeepWukong Isotonic

Vuddy Commit

Vuddy Max

Figure 4: Performance comparison against DeepWukong and
Vuddy.

the F1-Scores on completely different open-source software projects

that it was not trained on. It achieves an F1-Score of 58% for Libxml2

and even 83.4% for OpenSSL, although, there is an overlap between

QEMU’s and OpenSSL cryptographic feature implementations.

Context information contained in taint graphs and GIN lay-

ers significantly contributes to the detection performance

of PAVUDI.

How do other strategies compare to PAVUDI? We compare our ap-

proach against the seven baselines with the five aggregation strate-

gies. In Figure 4 we can see that PAVUDI has a much higher AUROC

and F1-Score compared to Vuddy and DeepWukong. Since VUDDY

is a deterministic method and not fine-tuned to our dataset, the bad

performance is expected and is representative of other rule-based

SAST tools. DeepWukong, however, is a sliced-based GNN approach

and only achieves an F1-Score of 65% using the Isotonic-Strategy.

In Figure 8 it is surprising that the simple token-based approach

VulDeePecker with the Probability-Strategy achieves an AUROC

of 79% on QEMU and Devign beating SySEVR. Furthermore, we ob-

serve an overall beneficial score using the isotonic projection for all

methods. Figure 5 shows the result against other graph-based meth-

ods. Especially BGNN4VD outperforms the former token-based

and slice-based methods with an AUROC of 80% and an F1-Score

of 75%. In all of our experiments, using theMean-Strategy yields

the worst scores. The Max and Commit Strategies are similarly

underperforming. Both increase the false positive rate too much

resulting in disadvantageous F1- and AUROC-scores. That means

the naive strategy, to merge all changed functions and classify this,

is detrimental to the detection performance. However, calculating

the failure probability using the Probability-Strategy is the best

aggregation approach. The inferiority of SySEVR and DeepWukong

may stem from the fact that they define slices around syntactic vul-

nerability candidates which may end up with too many candidates

and foster false positive alerts. 70% of all statements in FFmpeg

correspond to syntactic vulnerable candidates using SySEVR po-

tentially posing a low signal-to-noise ratio.
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Figure 5: Performance comparison against Devign, ReVeal
and BGNN4VD.

FFmpeg

5 10 15 20 25

Number Methods

0.00

0.25

0.50

0.75

1.00

B
a
l
a
n
c
e
A
c
c
u
r
a
c
y

QEMU

5 10 15 20 25

Number Methods

0.00

0.25

0.50

0.75

1.00

B
a
l
a
n
c
e
A
c
c
u
r
a
c
y

PAVUDI

Devign

ReVeal

BGNN4VD

Vuddy

DeepWukong

VulDeepecker

SySeVR

Figure 6: Performance decrease with increasing number of
changed methods.

The probabilistic aggregation is the best strategy for previ-

ous models applied to patches, still, PAVUDI provides an

up to three times stronger detection performance.

How does the size of a commit affect the performance? We assume

that the difficulty of detecting bugs is positively correlated with

number of methods touched in a commit. Relying on the Mean-

Strategy, for instance, would smooth out the result of a bug pre-

diction with too many changed methods. Resulting in a larger

amount of false negatives. Since the Probability-Strategy yields

the best result in our evaluation, we proceed to measure the per-

formance loss with commits that have an increasing number of

changed methods. In Figure 6 we indeed observe a performance

drop. With five changed methods the model performance already

deteriorates significantly. VUDDY and BGNN4VD can pertain to

their original performance only when analyzing less than 13 and 8

methods respectively. PAVUDI, however, is only slightly affected

by the number of methods in a commit.

The detection performance of most baselines deteriorates

after 8 changed methods within a patch. PAVUDI’s perfor-

mance slightly drops only after 15 methods.
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Figure 7: Performance decrease measured over time since
training.

How does PAVUDI behave after training and deployment? Concept

drift describes the performance loss after the deployment of a model.

We assume, that the features that a model is applied on might

change relative to the features the model was trained on originally.

We conduct another experiment to explain whether a model needs

to be fine-tuned after initial training and how large its generaliza-

tion effect is. We train all models, excluding VUDDY, on our dataset.

The dataset is sorted by contribution date and split in half. The first

half is for training and the second is for validation. In Figure 7, we

see that PAVUDI has a significant drop after 300 days. DeepWukong

deteriorates after 200 days on FFmpeg. The other models struggle

to learn anything initially on the time-sorted datasets. On QEMU

only Devign and BGNN4VD have a competitive initial F1-Score

of 75%. However, their detection capabilities shrink already after

respectively 25 and 60 days.

All baseline models lose their initial performance after at

most half a year from training. Only after one year, PAVUDI

significantly loses its detection efficiency.

6 PRACTICAL APPLICATION
We demonstrate that PAVUDI has a notable performance benefit

over other learning-based vulnerability discovery methods when

applied to patches. Due to this, we propose to integrate PAVUDI in

practical scenarios.

Integration. PAVUDI is specifically designed to detect patches

that either introduce or touch bugs or security vulnerabilities. As

already detailed in Section 4.3.1, we can detect bugs in patches by

checking out a project at a specific commit and extracting a taint

graph through the changed code lines with respect to the preceding

commit. This effectively enables us to integrate PAVUDI into a se-

cure software development lifecycle. For instance, PAVUDI can be

triggered on every new commit within a continuous integration or

deployment pipeline and analyze the changes. We report a finding

if PAVUDI’s confidence score for a code change exceeds a threshold.

However, due to the inherent problem of concept drift in the vulner-

able patch detection task which we have shown in our experiments,

it is evident that PAVUDI requires a continuous learning process

when deployed in software development. Therefore, PAVUDI has

to be retrained or fine-tuned regularly.

FFmpeg

0.00 0.25 0.50 0.75 1.00

F1-Score

0.0

0.2

0.4

0.6

0.8

1.0

R
O
C
A
U
C

QEMU

0.00 0.25 0.50 0.75 1.00

F1-Score

0.0

0.2

0.4

0.6

0.8

1.0

R
O
C
A
U
C

PAVUDI

VulDeepecker Commit

VulDeepecker Max

VulDeepecker Proba

VulDeepecker Mean

VulDeepecker Isotonic

SySeVR Max

SySeVR Proba

SySeVR Mean

SySeVR Isotonic

Figure 8: Performance comparison against VulDeePecker and
SySEVR.

Interpretation. Each reported finding should be reviewed man-

ually. Therefore, it is essential that the results help security prac-

titioners to find the root cause of the bug quickly. For this reason,

we have added an explanation mechanism to PAVUDI that can

highlight relevant nodes in the taint graph. Recall the vulnerable

patch from Figure 2 and its taint graph in Figure 3 with its most

important node highlighted in red according to PAVUDI. Just like

Sui et al. [40], we arrive at such an explanation by considering the

causal graph 𝐺𝑐
during inference. Since the attention mask can

be interpreted as relevance scores, we can rank the nodes by their

attention and highlight the node with the largest attention value.

This directly hints us to the node responsible for an array index

calculation that causes the bug in Figure 3. However, taint graphs

can become very large and cluttered, thus we suggest extracting

line-level information from the highlighted relevant nodes. By sim-

ply storing the line-level information on every node, we can extract

the relevant code lines from the highlighted nodes according to the

explanation. This allows for precise localization of bugs and vulner-

abilities and may even be integrated into integrated development

environments (IDEs).

6.1 Case-Studies
To demonstrate the practicability of our tool, we apply it in a real-

istic scenario on two tools with their most recent 100 commits at

the time of writing, namely Tinyproxy and Lrzip to find unknown

bugs. We reported every finding to the respective maintainer. In

particular, we proceed as outlined in the prior section: We extract

the taint graphs, run PAVUDI’s inference and extract line-level

explanation scores.

Table 3: Detected bugs by PAVUDI.

Project Bug Description Found in Commit Fixed?

Tinyproxy Buffer-Overflow 453235 Fixed (470cc0)

TinyProxy Undefined Behavior 64badd Fixed (6ffd9a)

TinyProxy Missing Format Limits 252959 Fixed (3764b8)

TinyProxy Undefined Behavior 252959 Reported

Lrzip Use-Of-Uninitialized Memory 09ceb8 Reported

Overall we found five bugs as depicted in Table 3. In TinyProxy

we identified a buffer overread, three bugs related to undefined

behavior, and one bug related to missing width limits in sscanf
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fields. In Lrzip we found a use-of-uninitialized value. We present

a bug found in TinyProxy, an HTTP/HTTPS proxy written in C,

as a case study in the following Section. In Figure 9, we can see

the change of a config parser function. The analyzed patch should

initially enhance the parsing speed, however, PAVUDI detects a

bug at line 11. The pointer q might exceed its limit resulting in a

buffer over-read. TinyProxy expects its configuration input space-

separated key-value-pairs to be of the form key value. If a space is

missing, the program crashes.

1 ...
2 - while (fgets (buffer, sizeof (buffer), f)) {
3 - if (check_match (conf, buffer, lineno)) {
4 - printf ("Syntax error on line %ld\n", lineno);
5 + for (;fgets (buffer, sizeof (buffer), f);++lineno) {
6 + if(buffer[0] == '#') continue;
7 + p = buffer;
8 + while(isspace(*p))p++;
9 + if(!*p) continue;
10 + q = p;
11 + while(!isspace(*q))q++;
12 ...

Figure 9: The buffer overflow in TinyProxy’s config parser.

6.2 Limitations
The discovery of security vulnerabilities in software is a hard prob-

lem that is undecidable in the general case. As a result, our approach

naturally comes with limitations and blind spots that we discuss in

the following.

Non-taint vulnerabilities. PAVUDI relies on data and control flow

between user-controlled sources and critical sinks. This conse-

quently means it can only detect vulnerabilities that manifest in the

interprocedural data or control flow. We cannot possibly find bugs

that do not share this characteristic, for instance, race conditions

or deadlocks.

Definition of sinks. The performance of our approach depends on

the definition of appropriate sinks and sources. This may be tricky

and subject to each individual project. We follow the approach

by Pewny and Holz [34] as described in Section 5.1.2. While this

selection of libc functions can miss certain vulnerabilities, such as

off-by-one errors, including all pointer arithmetics and function

calls, as Li et al. [29] propose, leads to computationally infeasible

large graphs for our method.

Model updates. Although PAVUDI seems to be more stable than

other methods, we see a performance decline after model deploy-

ment. This indicates that it is necessary to regularly update or

retrain PAVUDI with new data. Therefore, we propose to combine

PAVUDI with other vulnerability discovery methods, such as rule-

based and dynamic analysis methods, so that each balances the

blind spots of the others until updates to models and rules are

available.

7 RELATEDWORK
In this section, we present related literature from research areas

tangent to this work.

Learning-based vulnerability discovery. Several past works al-

ready target the problem of automatically discovering vulnerabili-

ties and bugs. For instance, Russell et al. [35] and Li et al. [30] use a

token-based approach. The combination of GNNs and code graphs

has already been proven to be suited for the discovery of bugs and

security vulnerabilities in software [10, 13, 44, 59]. Zhou et al. [59]

introduce the first gated graph neural network on code property

graphs to identify bugs in vulnerabilities collected from real-world

commits. Their approach outperforms popular open-source and

commercial static analyzers as well as token-based ML models. Cao

et al. [10] combine data and control-flow graphs with the abstract

syntax tree to the code composite graph.

Interprocedural Graphs. Li et al. [29] use interprocedural slices

for the vulnerability discovery task. Zheng et al. [57] show that

graphs extracted from intraprocedural function slices make it im-

possible for the models to learn interprocedural bugs spanning

multiple functions. While these approaches try to incorporate inter-

procedural information, it is insufficient since either the function

call depth is limited and rather small, or neither the input source

nor critical sinks are considered. Using a whole-program interpro-

cedural graph representation would solve this problem, however,

this is a non-trivial task, since programs can become rather large

[41]. Our approach overcomes the issue by only selecting relevant

paths. Cheng et al. [15] extract multiple interprocedural paths start-

ing from a function under analysis until its return. They neglect

sources and sinks and abstain from a whole-program perspective.

Learning on patches. Since this work focuses on patches, it is

noticeable that there is a research interest around the classifica-

tion of patches [46, 48] that have been introduced silently or are

security relevant. In this particular field, GNNs could have been

applied successfully [45]. Wang et al. [43] also classify security-

relevant patches to improve the dataset preparation. Another re-

search branch tries to detect anomalies in patches using meta-

information of the specific versioning control system [18, 21, 22].

Explainable AI. Deep-Learning models tend to be black boxes,

hence, there exist a large variety of explanation methods to enable

us to interpret a model’s decision. Guo et al. [24] introduce a black-

box method specifically for security-relevant models. Selvaraju

et al. [38], for instance, introduce a white-box method for image

classification. Sanchez-Lengeling et al. [36] port many methods to

the graph domain. Ganz et al. [19] and Warnecke et al. [49] show

that explanation methods used to locate bugs tend to reveal bias

and artifacts from the training procedure of a model. We address

the explainability of PAVUDI in this paper using soft attention as

presented by Sanchez-Lengeling et al. [36] as it has already been

done in other works [17].

8 CONCLUSION
In this work, we adapt several state-of-the-art learning-based vul-

nerability discovery models to vulnerable patch detection and show

that they have a poor performance and their detection capabili-

ties even degrade over time after deployment. As a consequence,

we present our novel patch-based vulnerability detection model,

PAVUDI, which leverages interprocedural code graphs and taint-

style static program analysis.
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APPENDIX

Table 4: Functions for 𝑉source.

Function Description

getchar/getc/getch Reads a char from stdin

fgets Reads a line from a stream

read Reads from a file descriptor

fopen Opens a file

scanf Reads formatted input from stdin

gets Reads input from stdin

fscanf Reads formatted input from a stream

getenv/secure_getenv Reads from an environment variable

fread Reads input from a stream

poll/ppoll Wait for event on file descriptor

recvfrom/recv/recvmsg Receives message from socket

Table 5: Functions for 𝑉sink.

Function Description

malloc/calloc/realloc Allocate heap memory.

memcpy Copies memory content.

strcpy Copies string content.

printf/snprintf/sprintf Provides formatted output.

memset Initializes memory.

strcat Concatenates strings.

free Deallocates memory.
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